❶ 风险价值法的VaR模型
根据Jorion(1996),VaR可定义为:
VaR=E(ω)-ω* ①
式中E(ω)为资产组合的预期价值;ω为资产组合的期末价值;ω*为置信水平α下投资组合的最低期末价值。
又设ω=ω0(1+R) ②
式中ω0为持有期初资产组合价值,R为设定持有期内(通常一年)资产组合的收益率。
ω*=ω0(1+R*) ③
R*为资产组合在置信水平α下的最低收益率。
根据数学期望值的基本性质,将②、③式代入①式,有
VaR=E[ω0(1+R)]-ω0(1+R*)
=Eω0 Eω0(R)-ω0-ω0R*
=ω0 ω0E(R)-ω0-ω0R*
=ω0E(R)-ω0R*
=ω0[E(R)-R*]ω
∴VaR=ω0[E(R)-R*] ④
上式公式中④即为该资产组合的VaR值,根据公式④,如果能求出置信水平α下的R*,即可求出该资产组合的VaR值。 VaR模型通常假设如下:
⒈市场有效性假设;
⒉市场波动是随机的,不存在自相关。
一般来说,利用数学模型定量分析社会经济现象,都必须遵循其假设条件,特别是对于我国金融业来说,由于市场尚需规范,政府干预行为较为严重,不能完全满足强有效性和市场波动的随机性,在利用VaR模型时,只能近似地正态处理。 从前面①、④两式可看出,计算VAR相当于计算E(ω)和ω*或者E(R)和R*的数值。从目前来看,主要采用三种方法计算VaR值。
⒈历史模拟法(historical simulation method)
⒉方差—协方差法
⒊蒙特卡罗模拟法(Monte Carlo simulation)
1、历史模拟法
“历史模拟法”是借助于计算过去一段时间内的资产组合风险收益的频度分布,通过找到历史上一段时间内的平均收益,以及在既定置信水平α下的最低收益率,计算资产组合的VaR值。
“历史模拟法”假定收益随时间独立同分布,以收益的历史数据样本的直方图作为对收益真实分布的估计,分布形式完全由数据决定,不会丢失和扭曲信息,然后用历史数据样本直方图的P—分位数据作为对收益分布的P—分位数—波动的估计。
一般地,在频度分布图中横轴衡量某机构某日收入的大小,纵轴衡量一年内出现相应收入组的天数,以此反映该机构过去一年内资产组合收益的频度分布。
首先,计算平均每日收入E(ω)
其次,确定ω*的大小,相当于图中左端每日收入为负数的区间内,给定置信水平 α,寻找和确定相应最低的每日收益值。
设置信水平为α,由于观测日为T,则意味差在图的左端让出
t=T×α,即可得到α概率水平下的最低值ω*。由此可得:
VaR=E(ω)-ω*
2、方差—协方差法
“方差—协方差”法同样是运用历史资料,计算资产组合的VaR值。其基本思路为:
首先,利用历史数据计算资产组合的收益的方差、标准差、协方差;
其次,假定资产组合收益是正态分布,可求出在一定置信水平下,反映了分布偏离均值程度的临界值;
第三,建立与风险损失的联系,推导VaR值。
设某一资产组合在单位时间内的均值为μ,标准差为σ,R*~μ(μ、σ),又设α为置信水平α下的临界值,根据正态分布的性质,在α概率水平下,可能发生的偏离均值的最大距离为μ-ασ,
即R*=μ-ασ。
∵E(R)=μ
根据VaR=ω0[E(R)-R*] 有
VaR=ω0[μ-(μ-ασ)]=ω0ασ
假设持有期为 △t,则均值和数准差分别为μ△t和 ,这时上式则变为:
VaR=ω0·α·
因此,我们只要能计算出某种组合的数准差σ,则可求出其VaR的值,一般情况下,某种组合的数准差σ可通过如下公式来计算
其中,n为资产组合的金融工具种类,Pi为第i种金融工具的市场价值,σi第i种金融工具的数准差,σij为金融工具i、j的相关系数。
除了历史模拟法和方差—数准差法外,对于计算资产组合的VaR的方法还有更为复杂的“蒙特卡罗模拟法”。它是基于历史数据和既定分布假定的参数特征,借助随机产生的方法模拟出大量的资产组合收益的数值,再计算VaR值。 ⒈确认头寸 找到受市场风险影响的各种金融工具的全部头寸
⒉确认风险因素 确认影响资产组合中金融工具的各种风险因素
⒊获得持有期内风险因素的收益分布 计算过去年份里的历史上的频度分布 计算过去年份里风险因素的标准差和相关系数 假定特定的参数分布或从历史资料中按自助法随机产生
⒋将风险因素的收益与金融工具头寸相联系 按照风险因素分解头寸(risk mapping) 将头寸的盯住市场价值(mark to market value)表示为风险因素的函数
⒌计算资产组合的可变性 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布 假定风险因素是呈正态分布,计算资产组合的标准差 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布
⒍给定置信区间推导VAR
VaR模型在金融风险管理中的应用
VaR模型在金融风险管理中的应用越来越广泛,特别是随着VaR模型的不断改进,不但应用于金融机构的市场风险、使用风险的定量研究,而且VaR模型正与线性规划模型(LPM)和非线性规划模型(ULPM)等规划模型论,有机地结合起来,确定金融机构市场风险等的最佳定量分析法,以利于金融机构对于潜在风险控制进行最优决策。
对于VaR在国外的应用,正如文中引言指出,巴塞尔委员会要求有条件的银行将VaR值结合银行内部模型,计算适应市场风险要求的资本数额;G20建议用VaR来衡量衍生工具的市场风险,并且认为是市场风险测量和控制的最佳方法;SEC也要求美国公司采用VaR模型作为三种可行的披露其衍生交易活动信息的方法之一。这表明不但金融机构内部越来越多地采用VaR作为评判金融机构本身的金融风险,同时,越来越多的督管机构也用VaR方法作为评判金融机构风险大小的方法。
我国对VaR模型的引介始于现代,具有较多的研究成果,但VaR模型的应确处于起步,各金融机构已经充分认识到VaR的优点,正在研究适合于自身经营特点的VaR模型。
本部分就VAR模型在金融机构风险管理中的应用及其注意的问题介绍如下:
例1 来自JP.Morgan的例子
根据JP.Morgan1994年年报披露,该公司1994年一天的95%VAR值平均为1500万美元,这一结果可从反映JP.Morgan1994年日收益分布状况图中求出.该公司日均收益为500万美元,即E(ω)=500万美元。
如果给定α=95%,只需找一个ω*,使日收益率低于ω*的概率为5%,或者使日收益率低于ω*的ω出现的天数为254×5%=13天,从图中可以看出,ω*=-1000万美元。
根据VAR=E(ω)-ω*=500-(-1000)=1500万美元
值得注意的是,这只是过去一段时间的数值,依据过去推测未来的准确性取决于决定历史结果的各种因素、条件和形势等,以及这些因素是否具有同质性,否则,就要做出相应的调查,或者对历史数据进行修正。这在我国由于金融机构非完全市场作用得到的数据更应该引起重视。
例2 来自长城证券杜海涛的研究
长城证券公司杜海涛在《VaR模型在证券风险管理中的应用》一文中,用VaR模型研究了市场指数的风险度量、单个证券的风险度量和证券投资基金净值的VaR等,研究表明,VaR模型对我国证券市场上的风险管理有较好的效果。
下面就作者关于市场指数的风险度量过程作一引用,旨在说明VaR的计算过程(本文引用时有删节)。
第一步 正态性检验
首先根据2000年1月4日至2000年6月2日期间共94个交易日的日收益率做分布直方图,由于深沪两市场具有高度相关性,此处仅以上证综合指数为例计算。可以看出上证综合指数日收益率分布表现出较强的正态特征:众数附近十分集中,尾部细小。分析表明,深市指数也有相同的特征。
下面利用数理统计的方法对2000年4月3日至6月2日期间上述3种指数的日收益率的分布情况进行正态性检验,检验结果如下:
W(深证综指)=0.972445
W(深证成指)=0.978764
W(上证综指)=0.970279
W为正态假设检验统计量,当样本容量为40时取α =0.05(表示我们犯错误的概率仅为 α=0.05),此时W0.05 =0.94,只有当W 时我们拒绝原假设。从我们的检验结果来看,我们无法拒绝三种指数的日收益率服从正态分布的假设。
有关这三种指数日收益率的相关统计量见表1。
表1 三种指数日收益率统计量
深圳综合 深圳成分 上证综合
均 值( )
0.001318 0.001061 0.001561
标准差( )
0.013363 0.012582 0.012391
通过上面的分析,我们可以得出三种指数的日收益率基本上服从N(μ,σ),由于三种指数的平均日收益率非常接近零值,故可近似为N(0,σ)。
第二步 VaR的计算
由于正态分布的特点,集中在均值附近左右各1.65σ区间范围内的概率为0.90,用公式表示为:P(μ-1.65σ,再根据正态分布的对称性可知P(X<μ-1.65σ )=P(X>μ 1.65σ)=0.05;则有P(X>μ-1.65σ)=0.95。根据上面的计算结果可知在95%的置信度情况下:
VaR值=T日的收盘价×1.65σ。
取2000年4月3日至2000年6月2日的数据,然后根据上面的公式可以计算出深证综指、深证成指、上证综指3种指数在2000年6月2日的VaR值分别为:
深证综合指数VaR=591.34×1.65×0.013363=13.04
深证成份指数VaR=4728.88×1.65×0.012582=98.17
上证综合指数VaR=1916.25×1.65×0.012391=39.17
其现实意义为:根据该模型可以有95%的把握判断指数在下一交易日即6月5日的收盘价不会低于T日收盘价-当日的VaR值;
即深证综合指数不会低于:591.34-13.04=578.30
深证成份指数不会低于:4728.88-98.17=4630.71
上证综合指数不会低于:1916.25-39.17=1877.08。
第三步 可靠性检验
现在来检验该模型的可靠性。根据3种指数的VaR来预测下一个交易日的指数变动下限,并比较该下限和实际收盘价,看预测的结果与我们期望值之间的差别。图2、图3、图4是3个指数于2000年4月3日至6月2日的实际走势与利用VaR预期下限的拟合图形。
现将样本区间内实际收盘指数低于预测下限的天数与95%置信度情况下的可能出现的期望天数作一统计对比,结果见表2。
表2 模型期望结果与实际结果的比较
深圳综合 深圳成分 上证综合
实际情况 3 3 3
期望情况 2 2 2
通过上面的计算我们可以发现应用VaR模型进行指数风险控制拟合结果较好。至于三种指数均有3个交易日超过预测下限,这主要是由于考察期间适逢台湾政权更迭及美众院审议表决予华PNTR的议案,市场波动较大所致。
例3 来自银行家信托公司的例子
由于金融机构特别是在证券投资中,高收益常伴随着高风险,下级部门或者交易员可能冒巨大风险追求利润,但金融机构出于稳健经营的需要,有必要对下级部门或者交易员可能的过渡投资机行为进行限制,因而引入考虑风险因素的业绩评价体系,美国银行和信托公司将VaR模型用于业绩评估中,确立了业绩评价指数——经风险调查的资本收益,即RAROC= ,从公式可看出,即使收益再高,但由于VaR也高,则RAROC也不会很高,其业绩评价也不可能很高。因此,将金融机构将VaR应用于业绩评价中,可对过度投机行为进行限制,使金融机构能更好地选择在最小风险下获取较大收益的项目。
同时,杜海涛也将VaR方法用于对我国5只基金管理人的经营业绩评价,评价结果如下表:
我国5只基金管理人的RAROC比较表
基金开元 基金普惠 基金金泰 基金安信 基金裕阳
VaR值 0.1178 0.0919 0.0880 0.1240 0.1185
收益率 0.4153 0.2982 0.3592 0.4206 0.3309
RAROC 2.8467 2.7495 3.5188 3.1707 2.7938
日收益率的标准差 0.045623 0.03748 0.035623 0.037033 0.036559
数据来源:杜海涛《VaR模型在证券风险管理中的应用》
随着我国加入WTO,金融全球化挑战我国的金融改革及创新,特别是金融理论的创新和控制风险技术的创新,如何将金融风险控制到最小程度,真正使金融体系成为支撑社会经济的基础,达到为社会分散经济风险的目的,是我国金融界必须面对的艰巨任务,如何用定量方法测度和控制金融风险,是金融机构和监管当局必须面对的问题。从金融机构本身来看,将风险定量分析方法,比如VaR模型应用于日常的风险管理,将市场风险和信用风险降到最低的程度,以期获取最大的利润回报,是金融机构的义不容辞的事情,也是其当务之急。从监管当局来看,促使金融机构应用先进的控制风险技术,使金融家们能够随心所欲地剥离各种风险,即对各种复杂的风险进行精确的计算和配置,将有利于我国的监管水平有较大的提高。因此,我国的金融机构和金融监管当局非常有必要将VaR模型等风险控制技术引入我国金融风险管理将非常必要,且具有一定的现实意义
❷ VAR模型优缺点和主要作用有哪些
一、VaR模型的优点如下:
1、 VaR模型测量风险简洁明了,统一了风险计量标准,管理者和投资者较容易理解掌握。
风险的测量是建立在概率论与数理统计的基础之上,既具有很强的科学性,又表现出方法操作上的简便性。同时,VaR 改变了在不同金融市场缺乏表示风险统一度量, 使不同术语(例如基点现值、现有头寸等) 有统一比较标准, 使不同行业的人在探讨其市场风险时有共同的语言。
另外,有了统一标准后,金融机构可以定期测算VaR值并予以公布,增强了市场透明度,有助于提高投资者对市场的把握程度,增强投资者的投资信心,稳定金融市场。
2、可以事前计算, 降低市场风险。
不像以往风险管理的方法都是在事后衡量风险大小,不仅能计算单个金融工具的风险, 还能计算由多个金融工具组成的投资组合风险。综合考虑风险与收益因素,选择承担相同的风险能带来最大收益的组合,具有较高的经营业绩。
3、确定必要资本及提供监管依据。
VaR为确定抵御市场风险的必要资本量确定了科学的依据, 使金融机构资本安排建立在精确的风险价值基础上, 也为金融监管机构监控银行的资本充足率提供了科学、统一、公平的标准。VaR 适用于综合衡量包括利率风险、汇率风险、股票风险以及商品价格风险和衍生金融工具风险在内的各种市场风险。因此, 这使得金融机构可以用一个具体的指标数值(VaR) 就可以概括地反映整个金融机构或投资组合的风险状况, 大大方便了金融机构各业务部门对有关风险信息的交流, 也方便了机构最高管理层随时掌握机构的整体风险状况, 因而非常有利于金融机构对风险的统一管理。同时, 监管部门也得以对该金融机构的市场风险资本充足率提出统一要求。
二、VaR的应用主要体现在:
1、,用于风险控制。目前已有超过1000家的银行、保险公司、投资基金、养老金基金及非金融公司采用VaR方法作为金融衍生工具风险管理的手段。利用VaR方法进行风险控制,可以使每个交易员或交易单位都能确切地明了他们在进行有多大风险的金融交易,并可以为每个交易员或交易单位设置VaR限额,以防止过度投机行为的出现。如果执行严格的VaR管理,一些金融交易的重大亏损也许就可以完全避免。
2、用于业绩评估。在金融投资中,高收益总是伴随着高风险,交易员可能不惜冒巨大的风险去追逐巨额利润。公司出于稳健经营的需要,必须对交易员可能的过度投机行为进行限制。所以,有必要引入考虑风险因素的业绩评价指标。
3、估算风险性资本(Risk-based capital)。以VaR来估算投资者面临市场风险时所需的适量资本,风险资本的要求是BIS对于金融监管的基本要求。下图说明适足的风险性资本与 VaR值之间的关系,其中VaR值被视为投资者所面临的最大可接受(可承担)的损失金额,若发生时须以自有资本来支付,防止公司发生无法支付的情况。
温馨提示:以上内容仅供参考。
应答时间:2021-02-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
❸ 金融风险控制中Var方法的应用
VaR的定义 在正常的市场条件和给定的置信度内,用于评估和计量任何一种金融资产或证券投资组合在既定时期内所面临的市场风险大小和可能遭受的潜在最大价值损失。比如,如果我们说某个敞口在99%的置信水平下的在险价值即VaR值为$1000万,这意味着平均看来,在100个交易日内该敞口的实际损失超过$1000万的只有1天(也即,每年有2~3天)。在数学上,VaR可表示为投资工具或组合的损益分布(P&L Distribution)的分位数(—quantile),表达式如下:表示组合P在持有期△t内市场价值的变化。上述等式说明了损失值等于或大于VaR的概率是α,或者可以说,在α概率下,损失值是大于VaR的。也可以说,VaR的具体定义为:在一定的持有期△t内,一定的置信水平1-α下投资组合P可能的最大损失。即:例如,持有期为1天,置信水平为97.5%的VaR是10万元,是指在未来的24小时内组合价值的最大损失超过10万元的概率应该小于2.5%,综合来看,可以确定应该理解为一负值,即所遭受的损失,则表示其发生的概率。
❹ 有关VAR风险价值的计算问题
风险价值法(VAR)
(一)概念
VAR实际上是要回答在概率给定情况下,银行投资组合价值在下一阶段最多可能损失多少。在风险管理的各种方法中,VAR方法最为引人瞩目。尤其是在过去的几年里,许多银行和法规制定者开始把这种方法当作全行业衡量风险的一种标准来看待。VAR之所以具有吸引力是因为它把银行的全部资产组合风险概括为一个简单的数字,并以美元计量单位来表示风险管理的核心——潜在亏损。
(二)特点
①可以用来简单明了表示市场风险的大小,单位是美元或其他货币,没有任何技术色彩,没有任何专业背景的投资者和管理者都可以通过VAR值对金融风险进行评判;
②可以事前计算风险,不像以往风险管理的方法都是在事后衡量风险大小;
③不仅能计算单个金融工具的风险。还能计算由多个金融工具组成的投资组合风险,这是传统金融风险管理所不能做到的。
(三)应用
①用于风险控制。目前已有超过1000家的银行、保险公司、投资基金、养老金基金及非金融公司采用VAR方法作为金融衍生工具风险管理的手段。利用VAR方法进行风险控制,可以使每个交易员或交易单位都能确切地明了他们在进行有多大风险的金融交易,并可以为每个交易员或交易单位设置VAR限额,以防止过度投机行为的出现。如果执行严格的VAR管理,一些金融交易的重大亏损也许就可以完全避免。
②用于业绩评估。在金融投资中,高收益总是伴随着高风险,交易员可能不惜冒巨大的风险去追逐巨额利润。公司出于稳健经营的需要,必须对交易员可能的过度投机行为进行限制。所以,有必要引入考虑风险因素的业绩评价指标。
但VAR方法也有其局限性。VAR方法衡量的主要是市场风险,如单纯依靠VAR方法,就会忽视其他种类的风险如信用风险。另外,从技术角度讲。VAR值表明的是一定置信度内的最大损失,但并不能绝对排除高于VAR值的损失发生的可能性。例如假设一天的99%置信度下的VAR=$1000万,仍会有1%的可能性会使损失超过1000万美元。这种情况一旦发生,给经营单位带来的后果就是灾难性的。所以在金融风险管理中,VAR方法并不能涵盖一切,仍需综合使用各种其他的定性、定量分析方法。亚洲金融危机还提醒风险管理者:风险价值法并不能预测到投资组合的确切损失程度,也无法捕捉到市场风险与信用风险间的相互关系。
VaR风险控制模型
(一)VaR模型基本思想编辑本段
VaR按字面的解释就是“处于风险状态的价值”,即在一定置信水平和一定持有期内,某一金融工具或其组合在未来资产价格波动下所面临的最大损失额。JP.Morgan定义为:VaR是在既定头寸被冲销(be neutraliged)或重估前可能发生的市场价值最大损失的估计值;而Jorion则把VaR定义为:“给定置信区间的一个持有期内的最坏的预期损失”。
(二)VaR基本模型
根据Jorion(1996),VaR可定义为:
VaR=E(ω)-ω* ①
式中E(ω)为资产组合的预期价值;ω为资产组合的期末价值;ω*为置信水平α下投资组合的最低期末价值。
又设ω=ω0(1+R) ②
式中ω0为持有期初资产组合价值,R为设定持有期内(通常一年)资产组合的收益率。
ω*=ω0(1+R*) ③
R*为资产组合在置信水平α下的最低收益率。
根据数学期望值的基本性质,将②、③式代入①式,有
VaR=E[ω0(1+R)]-ω0(1+R*)
=Eω0+Eω0(R)-ω0-ω0R*
=ω0+ω0E(R)-ω0-ω0R*
=ω0E(R)-ω0R*
=ω0[E(R)-R*]ω
∴VaR=ω0[E(R)-R*] ④
上式公式中④即为该资产组合的VaR值,根据公式④,如果能求出置信水平α下的R*,即可求出该资产组合的VaR值。
(三)VaR模型的假设条件
VaR模型通常假设如下:
⒈市场有效性假设;
⒉市场波动是随机的,不存在自相关。
一般来说,利用数学模型定量分析社会经济现象,都必须遵循其假设条件,特别是对于我国金融业来说,由于市场尚需规范,政府干预行为较为严重,不能完全满足强有效性和市场波动的随机性,在利用VaR模型时,只能近似地正态处理。
(四)VaR模型计算方法
从前面①、④两式可看出,计算VAR相当于计算E(ω)和ω*或者E(R)和R*的数值。从目前来看,主要采用三种方法计算VaR值。
⒈历史模拟法(historical simulation method)
⒉方差—协方差法
⒊蒙特卡罗模拟法(Monte Carlo simulation)
1、历史模拟法
“历史模拟法”是借助于计算过去一段时间内的资产组合风险收益的频度分布,通过找到历史上一段时间内的平均收益,以及在既定置信水平α下的最低收益率,计算资产组合的VaR值。
“历史模拟法”假定收益随时间独立同分布,以收益的历史数据样本的直方图作为对收益真实分布的估计,分布形式完全由数据决定,不会丢失和扭曲信息,然后用历史数据样本直方图的P—分位数据作为对收益分布的P—分位数—波动的估计。
一般地,在频度分布图中横轴衡量某机构某日收入的大小,纵轴衡量一年内出现相应收入组的天数,以此反映该机构过去一年内资产组合收益的频度分布。
首先,计算平均每日收入E(ω)
其次,确定ω*的大小,相当于图中左端每日收入为负数的区间内,给定置信水平 α,寻找和确定相应最低的每日收益值。
设置信水平为α,由于观测日为T,则意味差在图的左端让出
t=T×α,即可得到α概率水平下的最低值ω*。由此可得:
VaR=E(ω)-ω*
2、方差—协方差法
“方差—协方差”法同样是运用历史资料,计算资产组合的VaR值。其基本思路为:
首先,利用历史数据计算资产组合的收益的方差、标准差、协方差;
其次,假定资产组合收益是正态分布,可求出在一定置信水平下,反映了分布偏离均值程度的临界值;
第三,建立与风险损失的联系,推导VaR值。
设某一资产组合在单位时间内的均值为μ,数准差为σ,R*~μ(μ、σ),又设α为置信水平α下的临界值,根据正态分布的性质,在α概率水平下,可能发生的偏离均值的最大距离为μ-ασ,
即R*=μ-ασ。
∵E(R)=μ
根据VaR=ω0[E(R)-R*] 有
VaR=ω0[μ-(μ-ασ)]=ω0ασ
假设持有期为 △t,则均值和数准差分别为μ△t和 ,这时上式则变为:
VaR=ω0•α•
因此,我们只要能计算出某种组合的数准差σ,则可求出其VaR的值,一般情况下,某种组合的数准差σ可通过如下公式来计算
其中,n为资产组合的金融工具种类,Pi为第i种金融工具的市场价值,σi第i种金融工具的数准差,σij为金融工具i、j的相关系数。
除了历史模拟法和方差—数准差法外,对于计算资产组合的VaR的方法还有更为复杂的“蒙特卡罗模拟法”。它是基于历史数据和既定分布假定的参数特征,借助随机产生的方法模拟出大量的资产组合收益的数值,再计算VaR值。
风险估价技术比较
⒈确认头寸 找到受市场风险影响的各种金融工具的全部头寸
⒉确认风险因素 确认影响资产组合中金融工具的各种风险因素
⒊获得持有期内风险因素的收益分布 计算过去年份里的历史上的频度分布 计算过去年份里风险因素的标准差和相关系数 假定特定的参数分布或从历史资料中按自助法随机产生
⒋将风险因素的收益与金融工具头寸相联系 将头寸的盯住市场价值(mark to market value)表示为风险因素的函数 按照风险因素分解头寸(risk mapping) 将头寸的盯住市场价值(mark to market value)表示为风险因素的函数
⒌计算资产组合的可变性 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布 假定风险因素是呈正态分布,计算资产组合的标准差 利用从步骤3和步骤4得到的结果模拟资产组合收益的频度分布
⒍给定置信区间推导VAR
VaR模型在金融风险管理中的应用
VaR模型在金融风险管理中的应用越来越广泛,特别是随着VaR模型的不断改进,不但应用于金融机构的市场风险、使用风险的定量研究,而且VaR模型正与线性规划模型(LPM)和非线性规划模型(ULPM)等规划模型论,有机地结合起来,确定金融机构市场风险等的最佳定量分析法,以利于金融机构对于潜在风险控制进行最优决策。
对于VaR在国外的应用,正如文中引言指出,巴塞尔委员会要求有条件的银行将VaR值结合银行内部模型,计算适应市场风险要求的资本数额;G20建议用VaR来衡量衍生工具的市场风险,并且认为是市场风险测量和控制的最佳方法;SEC也要求美国公司采用VaR模型作为三种可行的披露其衍生交易活动信息的方法之一。这表明不但金融机构内部越来越多地采用VaR作为评判金融机构本身的金融风险,同时,越来越多的督管机构也用VaR方法作为评判金融机构风险大小的方法。
我国对VaR模型的引介始于近年,具有较多的研究成果,但VaR模型的应用现在确处于起步阶段,各金融机构已经充分认识到VaR的优点,正在研究适合于自身经营特点的VaR模型。
本部分就VAR模型在金融机构风险管理中的应用及其注意的问题介绍如下:
例1 来自JP.Morgan的例子
根据JP.Morgan1994年年报披露,该公司1994年一天的95%VAR值平均为1500万美元,这一结果可从反映JP.Morgan1994年日收益分布状况图中求出.该公司日均收益为500万美元,即E(ω)=500万美元。
如果给定α=95%,只需找一个ω*,使日收益率低于ω*的概率为5%,或者使日收益率低于ω*的ω出现的天数为254×5%=13天,从图中可以看出,ω*=-1000万美元。
根据VAR=E(ω)-ω*=500-(-1000)=1500万美元
值得注意的是,这只是过去一段时间的数值,依据过去推测未来的准确性取决于决定历史结果的各种因素、条件和形势等,以及这些因素是否具有同质性,否则,就要做出相应的调查,或者对历史数据进行修正。这在我国由于金融机构非完全市场作用得到的数据更应该引起重视。
例2 来自长城证券杜海涛的研究
长城证券公司杜海涛在《VaR模型在证券风险管理中的应用》一文中,用VaR模型研究了市场指数的风险度量、单个证券的风险度量和证券投资基金净值的VaR等,研究表明,VaR模型对我国证券市场上的风险管理有较好的效果。
下面就作者关于市场指数的风险度量过程作一引用,旨在说明VaR的计算过程(本文引用时有删节)。
第一步 正态性检验
首先根据2000年1月4日至2000年6月2日期间共94个交易日的日收益率做分布直方图,由于深沪两市场具有高度相关性,此处仅以上证综合指数为例计算。可以看出上证综合指数日收益率分布表现出较强的正态特征:众数附近十分集中,尾部细小。分析表明,深市指数也有相同的特征。
下面利用数理统计的方法对2000年4月3日至6月2日期间上述3种指数的日收益率的分布情况进行正态性检验,检验结果如下:
W(深证综指)=0.972445
W(深证成指)=0.978764
W(上证综指)=0.970279
W为正态假设检验统计量,当样本容量为40时取α =0.05(表示我们犯错误的概率仅为 α=0.05),此时W0.05 =0.94,只有当W 时我们拒绝原假设。从我们的检验结果来看,我们无法拒绝三种指数的日收益率服从正态分布的假设。
有关这三种指数日收益率的相关统计量见表1。
表1 三种指数日收益率统计量
深圳综合 深圳成分 上证综合
均 值( )
0.001318 0.001061 0.001561
标准差( )
0.013363 0.012582 0.012391
通过上面的分析,我们可以得出三种指数的日收益率基本上服从N(μ,σ),由于三种指数的平均日收益率非常接近零值,故可近似为N(0,σ)。
第二步 VaR的计算
由于正态分布的特点,集中在均值附近左右各1.65σ区间范围内的概率为0.90,用公式表示为:P(μ-1.65σ,再根据正态分布的对称性可知P(X<μ-1.65σ )=P(X>μ+1.65σ)=0.05;则有P(X>μ-1.65σ)=0.95。根据上面的计算结果可知在95%的置信度情况下:
VaR值=T日的收盘价×1.65σ。
取2000年4月3日至2000年6月2日的数据,然后根据上面的公式可以计算出深证综指、深证成指、上证综指3种指数在2000年6月2日的VaR值分别为:
深证综合指数VaR=591.34×1.65×0.013363=13.04
深证成份指数VaR=4728.88×1.65×0.012582=98.17
上证综合指数VaR=1916.25×1.65×0.012391=39.17
其现实意义为:根据该模型可以有95%的把握判断指数在下一交易日即6月5日的收盘价不会低于T日收盘价-当日的VaR值;
即深证综合指数不会低于:591.34-13.04=578.30
深证成份指数不会低于:4728.88-98.17=4630.71
上证综合指数不会低于:1916.25-39.17=1877.08。
第三步 可靠性检验
现在来检验该模型的可靠性。根据3种指数的VaR来预测下一个交易日的指数变动下限,并比较该下限和实际收盘价,看预测的结果与我们期望值之间的差别。图2、图3、图4是3个指数于2000年4月3日至6月2日的实际走势与利用VaR预期下限的拟合图形。
现将样本区间内实际收盘指数低于预测下限的天数与95%置信度情况下的可能出现的期望天数作一统计对比,结果见表2。
表2 模型期望结果与实际结果的比较
深圳综合 深圳成分 上证综合
实际情况 3 3 3
期望情况 2 2 2
通过上面的计算我们可以发现应用VaR模型进行指数风险控制拟合结果较好。至于三种指数均有3个交易日超过预测下限,这主要是由于考察期间适逢台湾政权更迭及美众院审议表决予华PNTR的议案,市场波动较大所致。
例3 来自银行家信托公司的例子
由于金融机构特别是在证券投资中,高收益常伴随着高风险,下级部门或者交易员可能冒巨大风险追求利润,但金融机构出于稳健经营的需要,有必要对下级部门或者交易员可能的过渡投资机行为进行限制,因而引入考虑风险因素的业绩评价体系,美国银行和信托公司将VaR模型用于业绩评估中,确立了业绩评价指数——经风险调查的资本收益,即RAROC= ,从公式可看出,即使收益再高,但由于VaR也高,则RAROC也不会很高,其业绩评价也不可能很高。因此,将金融机构将VaR应用于业绩评价中,可对过度投机行为进行限制,使金融机构能更好地选择在最小风险下获取较大收益的项目。
同时,杜海涛也将VaR方法用于对我国5只基金管理人的经营业绩评价,评价结果如下表:
我国5只基金管理人的RAROC比较表
基金开元 基金普惠 基金金泰 基金安信 基金裕阳
VaR值 0.1178 0.0919 0.0880 0.1240 0.1185
收益率 0.4153 0.2982 0.3592 0.4206 0.3309
RAROC 2.8467 2.7495 3.5188 3.1707 2.7938
日收益率的标准差 0.045623 0.03748 0.035623 0.037033 0.036559
数据来源:杜海涛《VaR模型在证券风险管理中的应用》
随着我国加入WTO,金融全球化挑战我国的金融改革及创新,特别是金融理论的创新和控制风险技术的创新,如何将金融风险控制到最小程度,真正使金融体系成为支撑社会经济的基础,达到为社会分散经济风险的目的,是我国金融界必须面对的艰巨任务,如何用定量方法测度和控制金融风险,是金融机构和监管当局必须面对的问题。从金融机构本身来看,将风险定量分析方法,比如VaR模型应用于日常的风险管理,将市场风险和信用风险降到最低的程度,以期获取最大的利润回报,是金融机构的义不容辞的事情,也是其当务之急。从监管当局来看,促使金融机构应用先进的控制风险技术,使金融家们能够随心所欲地剥离各种风险,即对各种复杂的风险进行精确的计算和配置,将有利于我国的监管水平有较大的提高。因此,我国的金融机构和金融监管当局非常有必要将VaR模型等风险控制技术引入我国金融风险管理将非常必要,且具有一定的现实意义。
❺ 想具体了解VaR模型及其在金融风险管理中的应用 请专业人士推荐一下参考书目 有满意答案50分
1吕晓荣 股指期货风险管理的研究 [期刊论文] -中国外资2010(8)
2张显柯 我国商业银行个人金融盈利溯源——基于定量与定性方法的结合 [期刊论文] -西南金融2010(10)
3姚禄仕.徐文龙 风险价值法及其在证券投资中的应用 [期刊论文] -价值工程2008(2)
VaR模型及其在金融风险管理中的应用
VaR Model and Its Application for Managing Financial Risk
doi: 摘要:风险价值(简称VaR)是目前国际金融风险管理领域广泛使用的工具,也是度量金融风险的一种新的技术标准.本文着重介绍了VaR的概念、计算及其应用,并指出VaR模型作为衡量金融市场风险的标准在我国的应用前景.作者: 张慧毅徐荣贞蒋玉洁
Author: Zhang Huiyi XV Rongzhen Jiang Yujie
作者单位: 天津科技大学经济与管理学院,天津,300022
❻ VaR在风险管理中的应用,如何做个实证分析
杆、相关性和当前头寸的组合风险的整体观点,被称为是一种具有前瞻性的风险衡量方法,已发展成为现代金融风险管理的国际标准和理论基础。基于VaR的商业银行风险管理研究文献,目前,主要体现在商业银行监管、商业银行资本管理和商业银行信用风险与操作风险管理三个方面,旨在尽可能地寻求利用市场工具和市场激励的方法,通过银行的政策、行为和技术提高银行的风险管理水平。
VaR;银行风险管理;文献述评
VaR的真正发展得益于世界各著名金融机构对市场风险管理的重视。许多著名金融机构,如JP.Morgan,Bankers Trust,Chemical Bank,Chase Man-hattan等,都投入了大量经费开发新的市场风险管理工具,旨在准确辨识和测量市场风险的基础上,开发出一种既能处理非线性的期权,又可提供总体风险的市场风险测量方法,VaR就是基于这一背景开发出来的。它在20世纪80年代首次被一些金融公司用于测量交易性证券的市场风险,获得了广泛应用。根据Jorion(2001)的概念:VaR(Value atRisk,常译为在险价值或风险价值)是指在正常的市场环境下,在一定的置信水平和持有期内,衡量某个特定的头寸或组合所面临的最大可能损失。与传统的风险衡量方法相比,VaR提供了一种考虑杠杆、相关性和当前头寸的组合风险的整体观点,被称为是一种具有前瞻性的风险衡量方法。风险的数量化量度发展从灵敏度到波动性,再到下侧量度,经历了从简单逐步走向准确的过程。VaR属于下侧量度,已经证明风险的下侧量度是对灵敏度与具有不确定性不利结局的波动性的整合。VaR作为一个很好的风险管理工具正式在2004年的新巴塞尔协议中获得应用推广,已成为现代金融风险管理的国际标准和理论基础。
一、VaR与商业银行监管研究
新巴塞尔协议所提倡的内部模型法(VaR模型法)反映了监管当局提倡在尽可能的地方寻求利用市场工具和市场激励的方法,通过银行的政策、行为和技术提高银行的监管水平。几次世界性的金融危机以来,关于银行风险行为的问题一直是一个焦点。如何通过不同的监管资本要求影响银行的风险承担行为,帮助银行获得更精确的风险测量和合适的风险激励,一直是监管当局和银行业共同努力的方向。巴塞尔协议集中反映了金融监管的各种理论与实践成果。除此之外,关于银行风险行为的监管文献也很多,主要分为三大类。
第一类是集中反映在巴塞尔系列文件中的相关研究成果。1988年,Basel资本协议对风险调整的银行资产强加了统一资本要求,总的风险量等于各风险资产乘以相应的风险权重,这时的风险权重主要旨在反映具体资产的信贷风险。在资本要求的计量方面,1988年的资本协议遗漏了许多重要的问题。短期的账户余额和政府持有的证券没有包括投资组合的识别问题,表外项目中轧差协议的敞口计算问题未曾涉及等。由于该协议只考虑了信用风险的资本要求,而没有考虑市场风险的资本要求,随着市场交易风险在银行投资组合中的相对重要性增加,迫使监管者重新考虑1988年的巴塞尔协议的资本要求体系。因此,巴塞尔委员会于1996年1月公布了一个旨在包括市场风险资本要求的协议修正案,以修改1988年的资本协议。1998年1月1日正式实施了建议的最终版本(下面统称为“1996年修正案”)。该修正案包括了覆盖由于市场价格变动引起市场风险的最小补充资本储备要求(BIS,1996a)。同时,提供了两种计量方法供银行选择:一是在满足监管和审计要求的前提下,采用以VaR为基础的内部模型法(IMA);二是采用巴塞尔委员会建议的标准法(Building Block Method)。具体思路是:先分别计算每个风险模块的资本要求,然后通过简单加总来计算整体的资本要求。IMA确定了基于银行内部风险测度的结果计算银行资本要求的方法。为了确保IMA计算出来的资本要求是充足的,巴塞尔委员会制订了内部模型建立的标准。如风险价值必须每日计算;至少用12个月的数据计算持有期为10天的损失分布,并且计算出充足的资本要求以覆盖99%的损失事件。在一个确定的时间范围内,最小的资本要求等于包括整个巿场风险和信用风险(或特殊风险)的总的资本要求,这里市场风险要求等于在最近60个交易日内平均每两周的VaR报告的一个倍数(≥3),信用风险资本要求等于风险调整资产的8%。随着信息技术的快速发展,银行的经营规模和业务范围急剧扩大,银行的营运风险呈上升趋势,由于内部控制失效而造成严重损失乃至机构倒闭的事件频繁发生一在1999年6月披露的新资本协议的建议改革案中,巴塞尔委员会将操作风险列为继市场风险、信用风险之后的第三大风险,并建议用总收入作为银行计量操作性风险的基础指标,总收入乘上一个比例指标α(≤12%,BIS,2001),所得即为操作性风险的资本要求。为了检查IMA的精度和顺利实施,巴塞尔委员会建议开展后验测试(Backtesting),将内部模型的风险测量结果和真实的交易结果进行比较。为了提高模型的精度,主张银行去发展利用每天损失的分布进行后验测试的能力。Kupiec(1995)认为由于银行资产波动性的不可观测,对于监管者的主要问题是无法排除错误的VaR报告和投资组合同报的非正态分布(如肥尾等),主张后验测试必须要求有许多观测变量(≥250个交易日)。巴塞尔委员会建议对于不能满足后验测试精度标准的银行将遭到附加的资本要求,后验测试和一些惩罚措施本质上是为了提高银行增强模型精度所采取的激励措施。Basak & Shapiro(2001)发现在VaR约束下,资产管理者只能部分地确保它们投资组合的损失,尤其在坏的资产状态下根本无法保障。在它们的模型中,VaR约束必须满足一定的期限T,允许银行管理者可以持续地重新调整它们的投资组合。为了得到瞬时的投资组合风险,监管当局对交易活跃资产的VaR后验测试期设置为一天(Bsael银行监管委员会,1996b)。但以上文献没有考虑银行监管机制对银行风险策略选择的互动影响。
第二类是银行在连续时间框架内银行监管的问题。Merton(1977,1978)应用Black Scholes(1973)的期权定价模型获得了固定期限存款的保险费价格,提出了监管者随机审查的方法,并且实现了在银行资产连续波动的假设下,合理存款保险价格的确定。Pennachi(1987)根据金融杠杆率定义风险,考察了银行风险承担的激励,提出了防止银行破产以避免存款人遭受损失的监管重要性。Keeley(1990)、Thomson(1990)、
Kaufman(1996)从不同层面对市场纪律改善银行监管效率进行了分析和实证研究,一致的结论是:充分应用市场方法能够准确及时地反映银行机构的条件和环境,从而可以显著增强投资者和存款人对银行的监督,有效约束存款机构向政府转嫁风险的激励,改善金融监管的水平和效率。Rochet(1992)证明了有限的银行负债产生一个激励,它使风险厌恶的银行(银行投资组合管理者尽力实现预期效用最大化)追求一个高风险的投资策略,建议最小化资本要求以克服这种风险承担行为。Fries etal(1997)在平衡社会破产费用和未来审查费用之间分析了最优的银行破产边界,发现了银行管理者承担风险的激励原因,通过对股东价值函数的线性化,获得了消除银行风险承担激励的奖励政策和权益支持计划,这里风险被定义为潜在状态变量的波动性而非杠杆率。Bhattacharya etal(2002)提出了消除银行风险承担激励的最优破产边界及其在这一边界内银行所需的资本量。该文献的模型假设潜在状态变量的波动性是连续的,银行风险承担的激励的存在只是通过股东价值函数的凸性(如有清偿力的银行价值函数是凸性的,因为大多数银行的资产价值满足最小资本要求)来减少,很少涉及银行风险转换的过程。
第三类是关于金融部门在一个连续时间内的风险转换。Ericsson(1997)&Leland(1998)提出了银行股东从一种风险水平向另一种风险水平转换的模型旨在通过资产替换的费用支出,对企业股票定价,并且获得最佳的资本结构。然而,这里较少虑及存款保险的因素。由于存款保险机制,使得银行负债能被无风险利率支持。因此,存款保险者和银行股东之间存在一个利益冲突。为减少存款保险制度的费用支出,银行必须满足通过审查机制强加的监管约束。
二、VaR与商业银行资本管理研究
资本和风险资产在银行内部更加合理准确地配置已成为现代商业银行风险管理的一个核心内容关于VaR与银行资本管理研究的文献主要分为三类。
第一类文献是基于静态视角的银行资本优化管理研究。在静态均方差的分析框架下,Kahane(1997)、Roehn、Santometro(1980)提出了一个非常严格的资本要求以引导银行用更低的风险资产取代更高的风险资产,但因此可能会增加投资组合的交易风险和违约风险。Kim & Santomero(1988)建立了在风险权重资产的基础上确定资本要求,除非风险权重对资产的β是按比例的,否则资本要求将导致银行承担更多的风险。Fudong & Keeley(1990)认为,在存款保险和有限负债的条件下,均方差框架分析资本要求的效果是不合时宜的,因为有限的负债导致有限的资产回报分布,特别是考虑到金融机构的价值最大化,并且表现出更严格的杠杆限制明显减少了最佳的风险承担。这个主要原因是金融机构在资本要求范围内资产组合选择最大的风险承担旨在存款保险价值的最大化。Gennotte&Pyle(1991)拓展了他们的分析结果,认为可以允许非零现值的投资组合,并表明在更严格的资本要求条件下会导致金融机构增加资产风险。对于静态集合,Chan、Greeballm & Thakor(1992),Giammarino、Lewis&Sappington(1993)在提供存款保险的情况下研究了一个如何引导金融机构向监管部门如实反映其真实风险的机制设计。Hovakimian&Kane(1994)将Merton的单期存款保险期权模型扩展为无限展期的股东收益模型,并据此对美国1985年到1994年的商业银行风险转嫁和资本监管有效性进行了实证分析,证明商业银行的资本监管并未有效地阻止银行业的风险转嫁问题,而且由于转嫁风险给银行带来大量的政府补贴,产生了风险转嫁的激励。Patri-cia Jackson,David J.Maude&William Perraudin(1998)基于VaR在银行资本管理中的应用展开了实证研究。Hellmann等人(2000)建立了资本监管的比较静态博弈模型,证明在金融自由化和充分竞争的市场环境下,如果不对存款利率实行必要的限制,银行选择投机资产的行为将不可避免,资本充足性监管将无法实现pareto效率。Flannery(1998)和Maclachlan(2001)认为,资本充足性监管为核心的监管模式存在较大缺陷,要提高资本监管的有效性,还必须配合相应的监管制度安排和市场约束机制。芬兰银行研究局(2001)结合新巴塞尔协议,分析了基于VaR方法的银行资本缓释。Philippe Jorion(2002)研究了如何利用VaR值分析银行的投资组合风险。Jerrmy Berkowitz&Jarmes O'Brien(2003)研究了如何提高VaR模型在商业银行应用中的精度。以上关于静态条件下银行最优资本要求的研究存在两大不足,一是没有考虑银行的交易费用;二是没有考虑银行经营策略和风险偏好对银行资本管理的影响。
第二类文献是关于动态条件下银行资本优化模型的研究。Blum(1999)在动态均方差的分析框架下,用一个两期模型证明在动态投资组合中,更加严格的资本要求会导致投资组合风险的增加。Ju andPearson(1999)验证了当罚金与例外联系时,1996年修正案能够激励金融机构揭示它们真实的VaR风险。Sentanon & Vorst(2001)、Basak&Shapiro(2001)认为,交易者的投资选择要受到交易组合VaR的外在限制,但没有考虑到金融机构的资本要求约束。Cuo、He and Issaenko(2001)认为,交易组合的价值函数是有限变化的,认为监管者能够完全而连续地观察到金融机构的VaR,并且在任何时点上的最小资本要求简单地等同于同时期VaR的一个固定乘数(对例外没有罚金),由于资本要求不是外生的,而是机构最佳的报告策略的内生结果,因此,可以用二元鞅和参数二次规划求解。DomenicoCuoco & Hong liu(2004)基于VaR,分析认为利用IMA方法确定资本要求在控制投资组合风险和真实风险揭示方面都是非常有效的,Cuoco等人的分析代表了基于VaR银行资本优化模型研究的最新成果,具有相当的前瞻性。但他们的成果中没有考虑银行操作风险的资本要求,没有进一步就在报告期末如果出现例外,违约仍然有可能发生并且银行的资本对于覆盖相应的罚金是不充足的情形展开研究。
第三类文献是基于VaR的银行风险资本配置与绩效评估研究。将VaR拓展到风险资本(CaR)和风险调整的绩效测量(RAROC)。Matten(1996)详细介绍了计算RAROC的各种方法;Zaik等人(1996)解释了美洲银行将各营业部门的RAROC与银行股
东的比率进行比较的动因是因为这个比率是股东要求的最小收益率;Zagst and Kehrbaum(1998)用数值方法研究了CaR约束下的投资组合优化问题;Stroughton & Zechner(1999)讨论了RAROC与股东价值SVA的关系;Grouhy等人(1999)对项目价值方法进行了详细比较,发现在一定条件下,RAROC与银行的权益资本成本相等,这些比较也对RAROC存在的部门进行了说明。此后,许多关于这一主题的文献一般讨论RAROC的应用实例居多。从整体上来说,CaR和RAROC在理论上是随着VaR的发展而发展的。目前,关于CaR和RAROC的研究主要侧重于应用领域,在发达国家,关于它们的应用研究已相当成熟,在我国由于会计制度的差异和银行风险管理技术的滞后,尚处于讨论和实验层面。
三、VaR与商业银行信用风险和操作风险管理研究
VaR方法的应用已由最初集中在定量市场风险正逐步扩展到信用风险的度量与管理领域(Baselcommittee on Banking supervision,2001)。目前,国际上具有代表性的信用风险管理模型有:JP·Morgan1997年给出的Credit MetricsTM模型,1997年CSFB给出的Credit Risk+系统,1998年Mckinsey给出的Credit Portfolio ViewTM系统,都利用了VaR来确定银行信贷组合的风险价值。可以说这些模型是VaR在信用风险管理领域应用的典范,但是,这些模型主要是针对发达国家银行业的,在我国目前的应用范围不是很大。除了2004年6月通过的新巴塞尔协议集中反映了银行信用风险管理研究的成果外(主要体现在银行内部评级法的应用中),近年来,关于银行信用风险这一主题具有代表性的研究成果是Gordy&Crouhy atal(2000)、Frey& McNeil(2001)、Michael B·Gordy(2002)的成果,他们研究了基于行业违约情形的信用风险建模,发现只存在单个驱动债务人相关性的信用风险因素且信用组合内的任意风险敞口都只占总风险敞口非常小的份额时,银行信用VaR的贡献具有“组合不变性”,虽然他们的研究只涉及单因素风险情形,但论证了基于评级的资本要求与一般的信用风险组合VaR模型是相符合的事实。Susanne Emmer& Dirk Tasche(2003)提出了基于单因素Vasicek信用组合模型的VaR粒度调整方法和半渐进方法。目前,国内关于这一主题的研究成果主要是詹原瑞(2004)著的《银行信用风险的现代度量与管理》一书,但该书主要是对国外现有成果的总括性综述。总体而言,关于银行信用风险管理这一主题的研究大都只涉及单因素情形,并且很少与银行具体的资产负债情形相联系。
20世纪80年代以来,一系列因为操作风险所导致的金融案件震惊了国际银行界,使银行经营者和监管者普遍认识到了操作风险管理的重要性。Duncan Wilson(1995)最早提出了操作风险的VaR度量,认为操作风险可以像市场风险和信用风险一样应用VaR来度量;Relnhard Buhr(2000)提出了一种计算金融机构VaR的方法,该方法详细地描述了所有相关的操作流程,各种内部控制方法被看作是控制点,估计出每一控制点在失去控制的情况下的最大损失(MD)以及失去控制的概率P,则该控制点上的VaR为MDxP;Medova(2000,2001)和Kyriacou(2002)在McNEIL以及Alexander J(1999)在极值理论研究的基础上,应用VaR和极值理论对操作风险进行了量化分析。由于低频率高冲击事件爆发的概率很低,单一银行关于这类事件造成损失的数据不足以支持操作风险模型的建立。总体上来说,目前国外关于VaR的操作风险度量研究主要是各金融机构根据自己的业务特点展开的,尚处于探索阶段,还没有一个统一的研究框架。与国际研究相比,国内关于操作风险的文献大都限于对新巴塞尔资本协议的介绍,对操作风险的信用量化分析极少,更谈不上相应的数据库建设。
以上介绍的是国外学者的研究现状,当前,我国对VaR的应用研究尚处于起步阶段。我国学者最早对VaR进行研究的是郑文通1997年的《金融风险管理的VaR方法及其应用》。在国内关于本课题的研究具有代表性的是王春峰(2001)著的《金融市场风险管理》,该书系统地介绍了VaR的有关理论基础。总体上来说,国内关于VaR的研究大都是国外文献的综述或模仿,着重于在证券市场的应用,缺乏基于VaR对我国银行业风险管理的理论分析和实证研究。
四、结束语
在新巴塞尔协议(BaselⅡ,2004年6月通过,2006年实施)中,关于资本金(或风险资本)计算公式的设计和相关参数的确定与检验都借鉴了VaR的思想和方法。VaR方法因为其概念简单,易于沟通,成为当今国际银行业风险计量和信息披露的标准工具。可以说,新巴塞尔协议集中反映了VaR在商业银行风险管理中的许多研究成果,但是,协议本身主要反映了发达国家银行业的资本管理要求,对于变化多样的各国银行体系来说,它只是提供了,一个很宽泛的分析框架。VaR方法在观察和处理风险时具有独特的视角,虽然其中一些已经完全超出我国当前金融研究和实践的现状,但是,建立与国际接轨的现代银行风险管理体系是我们的必由之路。在开放经济条件下,以VaR为核心的新巴塞尔协议在我国的实行只是时间的问题,我们要结合我国银行业的特点,未雨绸缪,针对以上分析中现有VaR研究和应用的不足,加强VaR方法在我国银行风险管理领域的理论和应用研究。转贴于 中国论文下载中心
❼ var可以干什么 var的三个应用阶段
VaR的应用主要体现在:第一,用于风险控制。目前已有超过1000家的银行、保险公司、投资基金、养老金基金及非金融公司采用VaR方法作为金融衍生工具风险管理的手段。利用VaR方法进行风险控制
❽ 金融风险管理中VAR的计算。
正在复习期末考试,看到了var
第一问:
var=σ(波动率)×α(99%置信水平为1.65,95%的置信水平为2.33)×w(总资产)
这个波动率可采用正态分布法,历史模拟法,蒙特卡罗模拟法之一。
我不知道你有数据不,他说的任选股票,你去网络一下,应该有人发布了这类问题σ的值。
2.3问我没看,不属于我的考试范围,我没太多时间,不好意思。
我学的是金融风险管理,只不过我没用书,学的老师的课件,你可以去网络下
❾ VAR方法的VaR在风险管理的应用
VaR的应用主要体现在:
第一,用于风险控制。目前已有超过1000家的银行、保险公司、投资基金、养老金基金及非金融公司采用VaR方法作为金融衍生工具风险管理的手段。利用VaR方法进行风险控制,可以使每个交易员或交易单位都能确切地明了他们在进行有多大风险的金融交易,并可以为每个交易员或交易单位设置VaR限额,以防止过度投机行为的出现。如果执行严格的VaR管理,一些金融交易的重大亏损也许就可以完全避免。
第二,用于业绩评估。在金融投资中,高收益总是伴随着高风险,交易员可能不惜冒巨大的风险去追逐巨额利润。公司出于稳健经营的需要,必须对交易员可能的过度投机行为进行限制。所以,有必要引入考虑风险因素的业绩评价指标。
第三,估算风险性资本(Risk-based capital)。以VaR来估算投资者面临市场风险时所需的适量资本,风险资本的要求是BIS对于金融监管的基本要求。下图说明适足的风险性资本与 VaR值之间的关系,其中VaR值被视为投资者所面临的最大可接受(可承担)的损失金额,若发生时须以自有资本来支付,防止公司发生无法支付的情况。
❿ 毕业论文选题理由怎么编啊 求神人指教 题目是《VAR方法在金融风险管理中的应用》谢谢了
sdjhkhjlj