⑴ 什么可以用来衡量企业的违约风险
资信评级是对经济主体和各类金融工具所负债务是否如约还本付息的能力和可信任程度的评价。在我国,当前有五家评级机构对企业债券和近40家评级机构对贷款企业的资信进行评级。评级结果表明:企业债券大都为AAA和AA级;贷款企业资信等级则大都呈正态分布。从各自评出的结果看,各家评级机构都会自认为是客观的。但对于市场的使用者和监管部门来说,如何鉴别此AAA就等同于彼AAA,此AAA就一定优于彼AA呢?如何比较和评价不同评级机构对同一评级对象的评级结果呢?那就需要有另一个可以对评级结果进行事后检验和比较的客观度量标准——违约率(Default Rate)。
违约率是指债务人未能偿还到期债务的实际违约情况。
违约概率(Probability of Default,PD)是预计债务人不能偿还到期债务(违约)的可能性。违约概率(PD)与违约率所不同的是:它是基于债务人历史和现实的实际违约情况作出的对未来一定时期(一般为一年)违约状况的判断。评级结果与违约率的对应关系是国际公认的事后检验评级机构评估质量标准的一项最重要的标尺。
在商业银行信用风险管理中,违约概率是指借款人在未来一定时期内不能按合同要求偿还银行贷款本息或履行相关义务的可能性。违约概率是计算贷款预期损失、贷款定价以及信贷组合管理的基础,因此如何准确、有效地计算违约概率对商业银行信用风险管理十分重要。
资信等级应有与之对应的违约率和违约概率才真正具有应用价值,才能作为衡量评级对象未来违约可能性和信用风险的工具。本质上,与资信等级对应的违约率和违约概率水平才真正代表资信等级所反映的风险状况。所以,缺少违约率统计数据的资信等级是不完整的、缺乏说服力的,只能对信用风险进行排序。但不同评级机构所设定的违约定义可能不同,所反映同一等级的质量也因此而不同。因此,只有违约定义相同的评级机构,其评级结果才可以进行比较,才能检验各自评级结果的“含金量”和质量差异。有了违约率指标的对比,就可以解释为什么违约率低的AA级要优于违约率高的AAA级了。有了对应违约率的资信等级才能真正成为决策的依据。
违约概率测度的作用
对商业银行信用风险管理而言,违约概率测度居于基础性地位,发挥着重要作用。
首先,这是进行信用风险管理的首要条件。作为测量信用风险的一种基本方法,信用评级的作用是建立在对借款人违约概率的测度基础上的。只有首先对借款人的违约概率作出科学测度,银行才能够精确地计算出预期损失的量,也才能够对客户信用状况作出客观、准确的评估,进而才能够保证商业银行信用风险管理的科学性与有效性。
其次,这是衡量不同评级体系优劣的客观标准。如果没有违约概率的测度,就难以衡量不同评级体系的优劣;如果回避严谨科学的违约概率测度,而仅仅追求评级指标体系的建设和评级方法的完善,就无法实现信用评级的现代化飞跃。违约概率测度是信用评级具备权威性和可操作性的灵魂,是衡量不同评级体系优劣的客观标准。
再次,这是提升商业银行风险管理素质的重要动力。实践经验表明,银行要成功地进行客户违约概率的测度,不仅要依托于先进统计模型和风险量化工具的科学运用,更离不开对现代商业银行经营管理规律的深入认识和科学把握,需要在管理的理念、体制、机制等方面都能够与之相适应,进而有力提升了商业银行风险管理的素质。
违约概率测度的方法
近年来,西方商业银行尤其是那些先进银行充分利用现代数理统计发展的最新研究成果,在客户违约概率测度上摸索出了很多方法,取得了很大的成就。综观违约概率测度的实践发展,其呈现出以下特征和趋势:从序数违约概率转向基数违约概率,违约概率的测度日臻具体化;从单个贷款的违约概率测度转向组合贷款的联合违约概率;从只考虑借款人自身的微观经济特征转向同时考虑宏观经济因素的影响;从基于历史数据的静态测度转向以预测为主的动态测度;从单一技术转向多元技术,违约概率测度的技术更加现代化和体现出多学科的交叉化,度量日趋科学化和精确化。
西方商业银行违约概率的测度方法可以概括为四大类:
1. 基于内部信用评级历史资料的测度方法,这是商业银行和评级公司根据长时间积累下来的信用等级历史资料,以历史违约概率的均值作为不同信用等级下企业对应的违约概率;
2. 基于期权定价理论的测度方法,这是美国KMV公司利用期权定价理论创立的违约概率预测模型——信用监测模型,也称KMV模型,是一种向前看的动态模型,主要适用于对公开上市公司的违约概率测度;
3. 基于保险精算的测度方法,是近几年把保险思想的工具用于估计预期违约概率;
4. 基于风险中性市场原理的测度方法,所谓风险中性市场,是指在进行资产交易的市场上,所有投资者都愿意接受从任何风险资产中得到与无风险资产的收益相同的预期收益,所有的资产价格都可以按照用无风险利率对资产预期的未来现金流量加以折现来计算。相比于历史上的转移概率,风险中性模型给出了前瞻性的违约预测。
国际上有代表性的信用风险评价模型在中国运用的局限性
我国加人WTO以来,加快了中国市场经济运行方式向国际接轨的步伐,中国资信评级业如何向国际接轨也受到了新的挑战。探索和选择国外且适合我国市场状况的评估模型势在必行,国内有部分学者对此也作了有益的研究。在这里,我们把部分学术界将国外有代表性的评估模型运用于中国市场进行实证研究后,将其所发现的问题和缺陷部分作一归集以利于后续的研究工作。
1、Z-Score信用风险评价模型
Z模型是通过选取五项关键性的财务比率并赋予其一定的参数(权重)来预测公司违约或破产可能性的方法。
其中:
X1=营运资金/总资产
X2=(未分配利润+资本公积)/总资产
X3=税息前收益/总资产
X4=股权的市场价值/债务的账面价值
X5=营业额/总资产
以Z值为临界值,若小于临界值将发生债务违约。
实证研究发现Z模型存在以下三个缺陷:一是该模型对上市公司中的少数几个行业具有准确性,许多行业的参数需调整。二是对非上市公司和小公司无法获得股权价值的数据,需要借助一些会计信息或其他指标来替代并通过对比分析才能最终得出期望的违约概率。这在一定程度上可能影响计算的准确性。三是需要在Z值的基础上按国内金融市场的状况作调整,但一般的决策者都无此能力。
2、KMV信用风险评价模型
KMV模型建立在期权定价理论之上,其出发点是基于这样的假设:公司的任何信息都可以在股票价格及其波动中得到体现,当公司股票的市场价值因波动而使预期的价值低于一定水平(违约点价值)以下时,公司就会对它的债务违约。该模型把持有的债权看作一个无风险的债权减去一个看跌期权,以此为基础计算出违约距离,并结合上市公司数据估计出经验违约概率。虽然KMV模型相对于以注重会计资料分析为基础的传统方法的违约概率估计体系具有更好的敏感性,但它的适应条件更严格。从结果上看,比较适用于资本市场成熟地区的上市公司。很显然,我国目前尚不具备推广KMV模型的条件。
3、CreditMetrics信用风险评价模型
该模型是基于这样的假设:某一特定时期内(通常为一年)债务组合价值的分布与将来债务人信用等级变化无关,信用等级迁移概率服从稳定的马尔科夫过程,即贷款或债券目前等级迁移与其过去的迁移概率不相关。虽然,该模型是目前被证明较为有效的信用风险模型,但还是存在若干尚需解决的问题:一是该模型假设贷款或债券目前等级迁移与其过去的迁移概率不相关。但实际的历史数据表明,一笔债务如果过去发生过违约事件,那么它目前等级下降的概率要比同一级别的没有发生过违约行为的要高;二是在计算债务的VaR值时,假设等级迁移概率矩阵是稳定的,即不同借款人之间、不同时期之间,其等级迁移概率是不变的。而实际上,行业因素、国家因素以及商业周期等因素会对等级迁移概率矩阵产生重要影响。三是CreditMetrics模型的违约模型和相关系数的度量是以期权定价理论为基础的,这对股票市场的成熟条件和数据的真实性有很高的要求。
4、神经网络模型
神经网络模型也是西方运用较广泛的估计违约概率模型,它依靠采集的数据,对大量的财务及相关信息进行数理统计分析,从而建立违约估计模型。这种模型在实证中仍存在局限性。一是随着技术创新及金融工具创新,使得财务报表上有限的数据越来越难以真实地反映企业的财务状况及经营结果,尤其是对于高新技术企业而言,非财务因素占据越来越重的分量;二是因国内企业会计信息失真现象还较为严重,使用失真的数据输入模型必然造成计算结果的偏差。
从对国外几种信用风险评价模型在我国的实证研究结果看,由于我国证券市场尚不成熟(公司的价值不能通过市场体现),市场信息披露十分有限,财务数据真实性不高,没有可资评级机构使用的大容量的信用信息数据库等客观条件的制约,而无法“拿来”即用。但信用风险评价模型作为现代计量经济学的成果,在发达的市场经济国家的广泛运用证明了其客观性和科学性。我国的市场经济发展尚处于初级阶段,市场成熟度与发达的市场经济国家相比尚有很大的差距,上述评估模型在我国还缺乏运用的基础条件。
我国违约概率的研究与发展
对中国银行业来说,内部评级仅仅处于起步阶段,时间短且不规范,其中关于违约数据库、转移矩阵等方面的基础设施建设几乎空白,贷款企业信用评级更多地是用于客户的选择及风险的预警,尚未向更深层次的风险量化管理方向发展。为此,中国商业银行和评级公司应该积极创造条件,加强客户违约概率测度,以有效提升信用风险管理水平。
第一,结合巴塞尔新资本协议参考定义,科学界定企业违约概念。目前国内还没有一贯明确的企业违约标准,为了和国际标准接轨,建议中国银行业对企业的违约概念作如下界定:在一定期限内(通常为一年)企业的贷款业务中只要出现次级、可疑或损失贷款的任一种情况的,就算做违约企业。
第二,加快建立违约概率测度模型的基础设施——违约数据库。中国银行业可以通过企业财务数据过滤器的建立,对企业提交的财务报表进行真实性检验,建立合格的违约数据库,为测度违约概率打下坚实的基础。中国人民银行建立的《银行信贷登记咨询系统》为中国银行业提供了一个海量的贷款数据库的信息平台。国内银行可以此为基础,充分发挥该系统的数据资源优势,并不断完善系统信息,进而建立我国自己的违约数据库。
第三,加强违约概率测度模型的研究、开发和应用。基于中国银行业所处的经营环境,以及历史实践具有自身的特殊性,那些西方商业银行所能够应用的违约概率模型,却并不一定能够适合我国商业银行。但我们可以借鉴这些违约概率模型的测度思想、方法与过程,结合数据积累的情况实现由简单模型到复杂模型的过渡。比如,可以根据已有年份评级结果数据的积累,运用信用计量模型对已有年份的每一信用等级的转移概率和违约概率进行测度,进而形成内部的信用等级转移矩阵的测度,以后随着年份数据的增加,再不断调整。这样,经过一段时间的积累,就可以建立起我们自己的内部转移矩阵模型。
另外,结合我国贷款企业的实际信用情况,转移矩阵模型中各个信用等级违约概率测度除了要考虑行业因素、经济周期性因素的影响以外,还要考虑地区、规模以及企业所有制性质等因素的影响。
⑵ 债券的定价模型有哪些各有什么优缺点
就理论上来说,主要有两个方向,一个是定价角度,一个从公司结构角度
定价角度就是先从现金流角度折现可以算出一个无违约的价格
然后加入违约概率和违约后回收比例,然后用期望来算
由于现实情况按这个算出来都是高估的,可以通过市场价格和中性风险去做系数调整把这个溢价去掉
然后再优化就是可以引入宏观经济和行业的系数,把利率和风险中性表述成这些的系数相关的线性函数,考虑到宏观经济和行业的系数一般不独立,要再做一个仿射
一般做到这里就差不多了,再优化就是加入流动性还有目前期限利差结构,再用实证去调整。
这个模型的问题主要是风险中性很可能(尤其在国内)是被大幅低估的,和市场上的结果比较难对上
公司结构角度就是从公司资产负债的出发,从bsm模型开始建模,认为资产首次下穿过负债就是违约。这个模型问题主要一个是模型违约的阈值比较难确定,第二个是杠杆率很高的企业往往在违约边缘资产负债表的噪音可能会很大。优化的方法就比较开放了,可以通过从股票和债券市场上取得额外信息加入模型,也可以通过可类比企业的数据获得额外信息
⑶ 风险量化评估模型有哪些
风险量化是指通过风险及风险的相互作用的估算来评价项目可能结果的范围。风险量化的基本内容是确定哪些实践需要制定应对措施。风险量化涉及到对风险和风险之间相互作用的评估,用这个评估分析项目可能的输出。这首先需要决定哪些风险值得反应。
应答时间:2020-12-03,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
⑷ KPMG风险中性定价模型如何计算债券违约率。
设P为该债券1年内的非违约概率,根据KPMG风险中性定价模型有,k=16.7%;回收率=0;i=5%
P(1+16.7%)+(1-P)(1+16.7%)x0=1+5% 可求得P=89.97%,即其违约概率为1-89.97%=10.03%
⑸ 信用风险度量模型的对现代信用风险度量模型的分析评价
该模型的优点是:KMV模型是一个动态模型,将借款公司的股价信息转换成信用信息,对借款公司质量的变化比较敏感,同时市场信息也被反映在模型当中,具有一定的前瞻性,模型的预测能力较强。
KMV模型在实际运用中存在的不足是:一是着重于违约预测,忽视了企业信用等级的变化,只适于评估与企业资产价值直接联系的信贷资产(基本上只是贷款)的风险;二是该模型适用于上市公司的信用风险评估,由于我国的股市并不是一个有效的市场,上市公司的股票价格常常背离公司的实际价值,企业资产价值特别是国有企业的资产价值并不能够完全反映到股票市值中,从而影响了模型预测的精确性。但是,该模型可以运用到对跨国集团信贷资产的风险管理上,跨国企业的信贷资产很大部分以其母公司为担保人,而其母公司所在国家的股票市场是比较成熟有效的;三是模型基于资产价值服从正态分布的假设和实际不相符,模型不能够对长期债务的不同类型进行分辨。 该模型具有两个优点:一是该模型属于MTM(market to market)模型,并据此计算信用风险的VaR值,这与国有商业银行的经营理念基本吻合;二是该模型首次将组合管理理念引入信用风险管理领域,适用于商业信用、债券、贷款、贷款承诺、信用证、以及市场工具(互换、远期等)等信贷资产组合的风险计量。
该模型的局限在于:
一是该模型对信用风险的评判很大程度上依赖于借款人的信用等级的变化,在我国现有的信用环境下,出现大量损失的概率可能较高。
二是模型假设信用等级转移概率是一个稳定的马尔可夫过程,而实际中信用等级转移与过去的转移结果之间有很高的相关性。
三是该模型假设无风险利率是事先决定的,我国债券市场尚不发达,还没有形成合理的基础利率,而基础利率是计算贷款现值的重要因素。
四是在我国目前还没有比较客观、权威的信用评级公司,没有现成的企业信用等级转换概率和不同信用等级企业违约回收率数据资料。在商业银行历史贷款资料库中,某一信用级别的企业在不同时期转换成另一信用级别的概率可能是不相同的,某一信用级别的企业在各个时期违约回收率的均值可能也是不同的。这些不同时期的转换概率和企业违约回收率均值就构成了混沌时间序列。如果假设经济的宏观因素没有大的波动,就可以利用构成的混沌时间序列来预测短期未来的信用等级转换概率矩阵和企业违约回收率均值。有了这些数据,国有商业银行就可以应用信用度量术模型量化和管理信用风险。
五是该模型在实际运用中需要能够做好信用等级评估工作的高素质的工作人员,另外由于该模型采用了蒙特卡罗模拟,运算量较大,以国有商业银行现有的电脑网络系统,每次计算VAR值都需要几个小时甚至十几个小时,这样的速度有时可能无法满足业务发展的需要。 该模型的主要优势:比较容易利用死亡率表来计算单个债券和债券组合的预期损失及其波动率,特别是计算债券组合很方便;死亡模型是从大量样本中统计出来的一个模型,所以采用的参数比较少。该模型主要劣势:没有考虑不同债券的相关性对计算结果的影响;没有考虑宏观经济环境对死亡率的影响,因而需要时时更新死亡率表;数据更新和计算量很大;不能处理非线性产品,如期权、外币掉期
信用度量模型的意义
信用度量模型作为新巴塞尔协议框架,其意义在于确定银打所承担的风险水平;对贷款等各种金融产品进行合理定价;合理配置银行资本,抵御各种风险。
下面以基于VaR的风险度最模型为例来说明在新巴塞尔议框架下风险度量模型的积极意义。
2001年, 巴塞尔委员会发布了旨在替代旧版巴塞尔协议的《新巴塞尔资本协议》(以下简称新巴塞尔协议) 。在此框架下,商业银行面临的风险被分为三类:信用风险、市场风险和操作风险。
VaR被运用于商业银行风险管理始于对于市场风险的监管。传统的市场风险管理技术可以分为灵敏性分析和波动性分析两类,但这两种方法在精确度、依赖性和全面性等方面存在明显的缺陷,而正如Jorion指出的那样,VaR方法他用规范的统计技术,全面地衡量市场风险,很好地弥补了灵敏性分析和波动性分析的缺陷,将市场风险管理技术提升到了一个新的高度 巴塞尔委员会也明确了用VaR 方法结合内部模型法来度量银行面临的市场风险的规定。
信用风险是商业银行面临的风险中最重要的一类风险,由于信用风险本身的一些特点, 运用VaR对其进行度量存在技术上的困难。但是随着数量技术的发展,新一代金融工程学家运用新的建模技术和分析方法建立了一些暴于VaR技术的信用风险度量模型。其中比较著名的有CIBC提出的CreditVaR 系列方法和J.P.Mrgan提出的CreditMetrics。
在商业银行皿临的风险中,操作风险一直以来缺乏明确定义和足够关注,在新巴塞尔协议中一项重要的修改,就是将操作风险纳入风险资本的计算和监管框架。新巴塞尔协议中提供了多种可供选择的计算操作风险资本盒的方法,其中比较复杂的损失分布法就需要运用VaR方法来确定操作风险资本。
⑹ 违约损失率的预测方法
鉴于历史数据平均值法的局限性,人们开始研究更多的方法来更加准确地估计LGD。这些方法主要包括以下三类:
1、历史数据回归分析法
这种方法是根据违约资产的LGD历史数据和理论因子模型应用统计回归分析和模拟方法建立起预测模型,然后将特定项目相关数据输入预测模型中得出该项目的LGD预测值。最为典型的是穆迪KMV公司的LossCalc模型。该模型利用穆迪公司拥有的美国过去20多年1800多个违约观察数据,覆盖了各个行业中900多个违约上市和非上市企业,对美国债券、贷款和优先股LGD建立了立即违约LGD和1年后违约LGD两种版本的预测模型。该预测模型的理论模型中对LGD的解释变量包括包括4大类(项目、公司、行业和宏观经济)9个因子。据穆迪公司称,该模型的对LGD的预测效果优于传统历史数据平均值法。
2、市场数据隐含分析法
从市场上尚未出现违约的正常债券或贷款的信用升水幅度中隐含的风险信息(包括PD和LGD)分析得出。该方法的理论前提是市场对债券定价是有效的,能够有效及时地反映债券发行企业信用风险的变化。这种变化反映在债券的信用升水中,即具有信用风险的公司债券的收益率与没有信用风险的同期限国债收益率的差额。 由于PD与LGD的乘积反映了债券的预期损失,是债券信用风险的重要内容,因此,反映信用风险的信用升水也同样反映了PD与LGD。在PD可以通过其特定的方法估测出来的情况下,隐含在信用升水中的LGD也就可以求解出来。显然,这种方法要应用复杂的资产定价模型,也需要充足的数据来支持这种复杂的分析。目前该方法在债券定价和信用衍生产品定价中有一定的应用,在银行贷款风险中则应用较少。
3、清收数据贴现法
不同于上述两者方法利用违约的历史数据或债券交易的市场数据,清收数据贴现法是根据通过预测违约了的不良资产在清收过程的现金流,并计算出其贴现值而得出LGD。应用这种方法的关键在于两个方面,一是对清收现金流的数额及其时间分布的合理估计;二是确定采用与风险水平相应的贴现率。显然,这两个方面都并非容易做到,尤其是对预期现金流贴现率的选用,对于已经违约的资产而言,采用多高的贴现率才能充分而又适当地反映其风险水平是非常困难的,这其中,主观经验判断的应用是不可避免的。由于这种方法不需要市场交易数据,比较适宜于估算银行贷款的LGD。
⑺ 分析东北特钢债券违约的原因债券违约风险有哪些应对策略
债券基金与股票、混合基金不同,由于债券风险本身就很小,因此,债券基金可以说是风险很小的一种基金了。我们可以根据它的一些特点来选择好的债券基金。
1、净值和收益波动小
债券基金的收益、回撤等波动本身就比股票和混合基金要小,因此,我们再选择债券基金的时候,不能光顾着收益排名,还要仔细查看它的历史最大回撤,收益波动等因素。
2、尽量选择净值和净值增长率较高的
为什么这么说?首先,大家要抛开一个误区:净值不等于价格,更不代表很便宜。同时,净值低与未来的收益没有太大关系。相反,净值高则代表着管理团队的投资能力强,盈利能力也强。
从另一方面讲,如果是有分红的基金的话,净值会因为分红金额、分红时间等的不同而变得不准确。尤其是一些积极分红的基金会与高分红的基金混在一起排名,这时,关注净值增长率就显得很重要了。
3、规模不应太大
因为债券本身交易就不活跃,再加上资金规模较大的话(通常以超过20亿元为标准),基金的“调仓换债”是个很大的问题。因此,选择一些小规模的债券基金,或许能在市场行情好的时候获取更多收益。
4、机构持仓比例高
一般来说,机构管理的资金量比较大,因此风险偏好很低,会选择配置一些稳定性好的债券或债券基金作为投资标的。因此,跟着“老大”走,找那些机构持仓的债券相关的标的基金或债券基金,不敢说高收益,但至少稳定的收益率波动,那时妥妥的。
5、看好宏观周期
在加息周期的话,利率上升,债券和债券基金的价格会下降。原因很简单,银行存款和债券的安全性和收益性相当,利息上去了,自然有一部分资金会流向更安全的银行存款了。因此,在加息周期购买的话,可以买到很多物美价廉的债券基金。
另外需要注意的是,债券基金的期限越长,受利率影响,下跌幅度会更大,因此,作为个人投资者,选择一些中短期的债券基金即可。
⑻ 最适合衡量公司债券的违约风险高低的指标是( )。
C
答案解析:
[解析]
根据公司的信用评级,可以衡量公司的信用程度和违约的可能性,从而判断违
约风险的高低。到期收益率是衡量盈利能力的,债券价格波动率衡量的是债券的市场风险;资产负债率衡量公司的资源利用和负债情况,不能直接衡量违约风险的高低。