⑴ 量化投资—策略与技术的作品目录
《量化投资—策略与技术》
策略篇
第 1章 量化投资概念
1.1 什么是量化投资 2
1.1.1 量化投资定义 2
1.1.2 量化投资理解误区 3
1.2 量化投资与传统投资比较 6
1.2.1 传统投资策略的缺点 6
1.2.2 量化投资策略的优势 7
1.2.3 量化投资与传统投资策略的比较 8
1.3 量化投资历史 10
1.3.1 量化投资理论发展 10
1.3.2 海外量化基金的发展 12
1.3.3 量化投资在中国 15
1.4 量化投资主要内容 16
1.5 量化投资主要方法 21
.第 2章 量化选股 25
2.1 多因子 26
2.1.1 基本概念 27
2.1.2 策略模型 27
2.1.3 实证案例:多因子选股模型 30
2.2 风格轮动 35
2.2.1 基本概念 35
2.2.2 盈利预期生命周期模型 38
2.2.3 策略模型 40
2.2.4 实证案例:中信标普风格 41
2.2.5 实证案例:大小盘风格 44
2.3 行业轮动 47
2.3.1 基本概念 47
2.3.2 m2行业轮动策略 50
2.3.3 市场情绪轮动策略 52
2.4 资金流 56
2.4.1 基本概念 56
2.4.2 策略模型 59
2.4.3 实证案例:资金流选股策略 60
2.5 动量反转 63
2.5.1 基本概念 63
2.5.2 策略模型 67
2.5.3 实证案例:动量选股策略和反转选股策略 70
2.6 一致预期 73
2.6.1 基本概念 74
2.6.2 策略模型 76
2.6.3 实证案例:一致预期模型案例 78
2.7 趋势追踪 84
2.7.1 基本概念 84
2.7.2 策略模型 86
2.7.3 实证案例:趋势追踪选股模型 92
2.8 筹码选股 94
2.8.1 基本概念 95
2.8.2 策略模型 97
2.8.3 实证案例:筹码选股模型 99
2.9 业绩评价 104
2.9.1 收益率指标 104
2.9.2 风险度指标 105
第 3章 量化择时 111
3.1 趋势追踪 112
3.1.1 基本概念 112
3.1.2 传统趋势指标 113
3.1.3 自适应均线 121
3.2 市场情绪 125
3.2.1 基本概念 126
3.2.2 情绪指数 128
3.2.3 实证案例:情绪指标择时策略 129
3.3 有效资金 133
3.3.1 基本概念 133
3.3.2 策略模型 134
3.3.3 实证案例:有效资金择时模型 137
3.4 牛熊线 141
3.4.1 基本概念 141
3.4.2 策略模型 143
3.4.3 实证案例:牛熊线择时模型 144
3.5 husrt指数 146
3.5.1 基本概念 146
3.5.2 策略模型 148
3.5.3 实证案例 149
3.6 支持向量机 152
3.6.1 基本概念 152
3.6.2 策略模型 153
3.6.3 实证案例:svm择时模型 155
3.7 swarch模型 160
3.7.1 基本概念 160
3.7.2 策略模型 161
3.7.3 实证案例:swarch模型 164
3.8 异常指标 168
3.8.1 市场噪声 168
3.8.2 行业集中度 170
3.8.3 兴登堡凶兆 172
第 4章 股指期货套利 180
4.1 基本概念 181
4.1.1 套利介绍 181
4.1.2 套利策略 183
4.2 期现套利 185
4.2.1 定价模型 185
4.2.2 现货指数复制 186
4.2.3 正向套利案例 190
4.2.4 结算日套利 192
4.3 跨期套利 195
4.3.1 跨期套利原理 195
4.3.2 无套利区间 196
4.3.3 跨期套利触发和终止 197
4.3.4 实证案例:跨期套利策略 199
4.3.5 主要套利机会 200
4.4 冲击成本 203
4.4.1 主要指标 204
4.4.2 实证案例:冲击成本 205
4.5 保证金管理 208
4.5.1 var方法 208
4.5.2 var计算方法 209
4.5.3 实证案例 211
第 5章 商品期货套利 214
5.1 基本概念 215
5.1.1 套利的条件 216
5.1.2 套利基本模式 217
5.1.3 套利准备工作 219
5.1.4 常见套利组合 221
5.2 期现套利 225
5.2.1 基本原理 225
5.2.2 操作流程 226
5.2.3 增值税风险 230
5.3 跨期套利 231
5.3.1 套利策略 231
5.3.2 实证案例:pvc跨期套利策略 233
5.4 跨市场套利 234
5.4.1 套利策略 234
5.4.2 实证案例:伦铜—沪铜跨市场套利 235
5.5 跨品种套利 236
5.5.1 套利策略 237
5.5.2 实证案例 238
5.6 非常状态处理 240
第 6章 统计套利 242
6.1 基本概念 243
6.1.1 统计套利定义 243
6.1.2 配对交易 244
6.2 配对交易 247
6.2.1 协整策略 247
6.2.2 主成分策略 254
6.2.3 绩效评估 256
6.2.4 实证案例:配对交易 258
6.3 股指套利 261
6.3.1 行业指数套利 261
6.3.2 国家指数套利 263
6.3.3 洲域指数套利 264
6.3.4 全球指数套利 266
6.4 融券套利 267
6.4.1 股票—融券套利 267
6.4.2 可转债—融券套利 268
6.4.3 股指期货—融券套利 269
6.4.4 封闭式基金—融券套利 271
6.5 外汇套利 272
6.5.1 利差套利 273
6.5.2 货币对套利 275
第 7章 期权套利 277
7.1 基本概念 278
7.1.1 期权介绍 278
7.1.2 期权交易 279
7.1.3 牛熊证 280
7.2 股票/期权套利 283
7.2.1 股票—股票期权套利 283
7.2.2 股票—指数期权套利 284
7.3 转换套利 285
7.3.1 转换套利 285
7.3.2 反向转换套利 287
7.4 跨式套利 288
7.4.1 买入跨式套利 289
7.4.2 卖出跨式套利 291
7.5 宽跨式套利 293
7.5.1 买入宽跨式套利 293
7.5.2 卖出宽跨式套利 294
7.6 蝶式套利 296
7.6.1 买入蝶式套利 296
7.6.2 卖出蝶式套利 298
7.7 飞鹰式套利 299
7.7.1 买入飞鹰式套利 300
7.7.2 卖出飞鹰式套利 301
第 8章 算法交易 304
8.1 基本概念 305
8.1.1 算法交易定义 305
8.1.2 算法交易分类 306
8.1.3 算法交易设计 308
8.2 被动交易算法 309
8.2.1 冲击成本 310
8.2.2 等待风险 312
8.2.3 常用被动型交易策略 314
8.3 vwap算法 316
8.3.1 标准vwap算法 316
8.3.2 改进型vwap算法 319
第 9章 其他策略 323
9.1 事件套利 324
9.1.1 并购套利策略 324
9.1.2 定向增发套利 325
9.1.3 套利重仓停牌股票的投资组合 326
9.1.4 封闭式投资组合套利 327
9.2 etf套利 328
9.2.1 基本概念 328
9.2.2 无风险套利 330
9.2.3 其他套利 334
9.3 lof套利 335
9.3.1 基本概念 335
9.3.2 模型策略 336
9.3.3 实证案例:lof 套利 337
9.4 高频交易 341
9.4.1 流动性回扣交易 341
9.4.2 猎物算法交易 342
9.4.3 自动做市商策略 343
9.4.4 程序化交易 343
理论篇
第 10章 人工智能 346
10.1 主要内容 347
10.1.1 机器学习 347
10.1.2 自动推理 350
10.1.3 专家系统 353
10.1.4 模式识别 356
10.1.5 人工神经网络 358
10.1.6 遗传算法 362
10.2 人工智能在量化投资中的应用 366
10.2.1 模式识别短线择时 366
10.2.2 rbf神经网络股价预测 370
10.2.3 基于遗传算法的新股预测 375
第 11章 数据挖掘 381
11.1 基本概念 382
11.1.1 主要模型 382
11.1.2 典型方法 384
11.2 主要内容 385
11.2.1 分类与预测 385
11.2.2 关联规则 391
11.2.3 聚类分析 397
11.3 数据挖掘在量化投资中的应用 400
11.3.1 基于som 网络的股票聚类分析方法 400
11.3.2 基于关联规则的板块轮动 403
第 12章 小波分析 407
12.1 基本概念 408
12.2 小波变换主要内容 409
12.2.1 连续小波变换 409
12.2.2 连续小波变换的离散化 410
12.2.3 多分辨分析与mallat算法 411
12.3小波分析在量化投资中的应用 414
12.3.1 k线小波去噪 414
12.3.2 金融时序数据预测 420
第 13章 支持向量机 429
13.1 基本概念 430
13.1.1 线性svm 430
13.1.2 非线性svm 433
13.1.3 svm分类器参数选择 435
13.1.4 svm分类器从二类到多类的推广 436
13.2 模糊支持向量机 437
13.2.1 增加模糊后处理的svm 437
13.2.2 引入模糊因子的svm训练算法 439
13.3 svm在量化投资中的应用 440
13.3.1 复杂金融时序数据预测 440
13.3.2 趋势拐点预测 445
第 14章 分形理论 452
14.1 基本概念 453
14.1.1 分形定义 453
14.1.2 几种典型的分形 454
14.1.3 分形理论的应用 456
14.2 主要内容 457
14.2.1 分形维数 457
14.2.2 l系统 458
14.2.3 ifs系统 460
14.3 分形理论在量化投资中的应用 461
14.3.1 大趋势预测 461
14.3.2 汇率预测 466
第 15章 随机过程 473
15.1 基本概念 473
15.2 主要内容 476
15.2.1 随机过程的分布函数 476
15.2.2 随机过程的数字特征 476
15.2.3 几种常见的随机过程 477
15.2.4 平稳随机过程 479
15.3 灰色马尔可夫链股市预测 480
第 16章 it技术 486
16.1 数据仓库技术 486
16.1.1 从数据库到数据仓库 487
16.1.2 数据仓库中的数据组织 489
16.1.3 数据仓库的关键技术 491
16.2 编程语言 493
16.2.1 GPU算法交易 493
16.2.2 MATLAB 语言 497
16.2.3 c#语言 504
第 17章 主要数据与工具 509
17.1 名策多因子分析系统 509
17.2 MultiCharts:程序化交易平台 511
17.3 交易开拓者:期货自动交易平台 514
17.4 大连交易所套利指令 518
17.5 mt5:外汇自动交易平台 522
第 18章 量化对冲交易系统:D-alpha 528
18.1 系统构架 528
18.2 策略分析流程 530
18.3 核心算法 532
18.4 验证结果 534
表目录
表1 1 不同投资策略对比 7
表2 1 多因子选股模型候选因子 30
表2 2 多因子模型候选因子初步检验 31
表2 3 多因子模型中通过检验的有效因子 32
表2 4 多因子模型中剔除冗余后的因子 33
表2 5 多因子模型组合分段收益率 33
表2 6 晨星市场风格判别法 36
表2 7 夏普收益率基础投资风格鉴别 37
表2 8 中信标普风格指数 41
表2 9 风格动量策略组合月均收益率 43
表2 10 大小盘风格轮动策略月收益率均值 46
表2 11 中国货币周期分段(2000—2009年) 49
表2 12 沪深300行业指数统计 50
表2 13 不同货币阶段不同行业的收益率 51
表2 14 招商资金流模型(cmsmf)计算方法 58
表2 15 招商资金流模型(cmsmf)选股指标定义 59
表2 16 资金流模型策略——沪深300 61
表2 17 资金流模型策略——全市场 62
表2 18 动量组合相对基准的平均年化超额收益(部分) 68
表2 19 反转组合相对基准的平均年化超额收益(部分) 69
表2 20 动量策略风险收益分析 71
表2 21 反转策略风险收益分析 73
表2 22 趋势追踪技术收益率 93
表2 23 筹码选股模型中单个指标的收益率情况对比 99
表3 1 ma指标择时测试最好的20 组参数及其表现 117
表3 2 4个趋势型指标最优参数下的独立择时交易表现比较 120
表3 3 有交易成本情况下不同信号个数下的综合择时策略 120
表3 4 自适应均线择时策略收益率分析 124
表3 5 市场情绪类别 126
表3 6 沪深300指数在不同情绪区域的当月收益率比较 128
表3 7 沪深300指数在不同情绪变化区域的当月收益率比较 129
表3 8 沪深300指数在不同情绪区域的次月收益率比较 130
表3 9 沪深300指数在不同情绪变化区域的次月收益率比较 130
表3 10 情绪指数择时收益率统计 132
表3 11 svm择时模型的指标 156
表3 12 svm对沪深300指数预测结果指标汇总 156
表3 13 svm择时模型在整体市场的表现 156
表3 14 svm择时模型在单边上涨市的表现 157
表3 15 svm择时模型在单边下跌市的表现 158
表3 16 svm择时模型在震荡市的表现 159
表3 17 噪声交易在熊市择时的收益率 170
表4 1 各种方法在不同股票数量下的跟踪误差(年化) 190
表4-2 股指期货多头跨期套利过程分析 199
表4 3 不同开仓比例下的不同保证金水平能够覆盖的市场波动及其概率 211
表4 4 不同仓单持有期下的保证金覆盖比例 212
表6 1 融券标的股票中在样本期内最相关的50 对组合(部分) 248
表6 2 残差的平稳性、自相关等检验 249
表6 3 在不同的阈值下建仓、平仓所能获得的平均收益 251
表6 4 采用不同的模型在样本内获取的收益率及最优阈值 252
表6 5 采用不同的模型、不同的外推方法在样本外获取的收益率(%) 253
表6 6 主成分配对交易在样本内取得的收益率及最优阈值 255
表6 7 主成分配对交易在样本外的效果 255
表6-8 各种模型下统计套利的结果 256
表6 9 延后开仓+提前平仓策略实证结果 260
表6 10 各行业的配对交易结果 261
表7 1 多头股票-期权套利综合分析表 283
表7 2 多头股票—股票期权套利案例损益分析表 284
表7 3 多头股票-指数期权套利案例损益分析表 285
表7 4 转换套利分析过程 286
表7 5 买入跨式套利综合分析表 289
表7 6 买入跨式套利交易细节 289
表7 7 卖出跨式套利综合分析表 291
表7 8 卖出跨式套利交易细节 292
表7 9 买入宽跨式套利综合分析表 293
表7 10 卖出宽跨式套利综合分析表 294
表7 11 买入蝶式套利综合分析表 296
表7 12 卖出蝶式套利综合分析表 298
表7 13 买入飞鹰套利分析表 300
表7 14 卖出飞鹰式套利综合分析表 301
表9 1 主要并购方式 324
表9 2 并购套利流程 325
表9 3 鹏华300 lof两次正向套利的情况 339
表9 4 鹏华300 lof两次反向套利的情况 340
表10 1 自动推理中连词系统 352
表10 2 模式识别短线择时样本数据分类 369
表10 3 rbf神经网络股价预测结果 375
表10 4 遗传算法新股预测参数设置 379
表10 5 遗传算法新股预测结果 380
表11 1 决策树数据表 389
表11 2 关联规则案例数据表 392
表11 3 som股票聚类分析结果 403
表11 4 21种股票板块指数布尔关系表数据片断 404
表12 1 深发展a日收盘价小波分析方法预测值与实际值比较 427
表12 2 不同分解层数的误差均方根值 428
表13 1 svm沪深300指数预测误差情况 445
表13 2 svm指数预测和神经网络预测的比较 445
表13 3 技术反转点定义与图型 448
表13 4 svm趋势拐点预测结果 450
表14 1 持续大涨前后分形各主要参数值 463
表14 2 持续大跌前后分形个主要参数值 465
表14 3 外汇r/ s 分析的各项指标 469
表14 4 v(r/s)曲线回归检验 470
表15 1 灰色马尔可夫链预测深证成指样本内(2005/1—2006/8) 484
表15 2 灰色马尔可夫链预测深证成指样本外(2006/9—2006/12) 484
表16-1 vba的12种数据类型 499
表18-1 d-alpha系统在全球市场收益率分析 534
⑵ 股票量化交易策略是什么意思
股市是一门经济学,哲学,概率学,心理学的综合体,想要成功,需要不断去感悟去总结每一次的失败,这样才能走的更好更远。
第一个理念:
顺势而为
股市的大趋势决定个股的走势,当指数大涨时个股更容易爆发,这个时候适合重仓介入,当然要注意获利就出;当市场处于弱势时,就要考虑轻仓介入,不盲目追涨。
第二个理念:
选定有价值的公司
在投资中,选定有价值的公司很重要,因为这些公司有很强的上涨潜力,一旦市场有好的信号,或者公司有大利好时,股价就会飞速上涨,所以这样的公司更容易让普通股民赚到钱。
第三个理念:
分批建仓 坚持到底
在投资中,投资者要住的是要做好投资策略,一般的策略就是分批建仓,在市场下跌时以倒金字塔形态建仓,在市场上涨时,以金字塔形态减仓。如果股票短期被套,市场情况还可以的话,则要选择坚持持仓。
天字一号量化交易系统通过设定不同的各种指标条件,一旦市场交易情况满足这些条件时就自动弹出一些操作指示;设定值达到开仓条件,系统会弹出买入信号、设定值达到减仓条件卖出一半或者全部卖出等。
⑶ 主动型对冲基金是什么
你好
很多人都知道巴菲特的世纪之约,用标普500十年时间打败了对冲基金经理精心挑选的主动型对冲基金。那么在中国的A股市场,主动型基金是否能跑赢指数呢?众说纷纭。这里我们来做个回测,看看实际情况究竟如何?
首先我们把股票型基金和混合型基金这两类权益类基金区分一下,一般而言,股票型基金的股票仓位在80%以上,而混合型基金的股票仓位是可以从0%到95%之间的,也就是说混合型基金的仓位要灵魂的多,作为指数对标,我们还是选用的最常见的沪深300指数,和它的全收益指数,这两者的差异主要是分红引起了,全收益平均比沪深300每年大概多了1.8%左右。
为了避免少部分异常数据对平均值的影响,我们这里用了每年涨幅的中位数(下同),统计表明,从2007年到2020年4月17日这13年多,股票型基金的中位数年化是0.88%,远远低于沪深300的4.90%,但同期混合型基金的中位数年化高达8.21%,不仅仅跑赢了沪深300,而且还跑赢了沪深300全收益指数的6.70%。
这个结果告诉我们什么?告诉我们在A股这个市场,还不是那么充分有效,基金经理可以通过仓位控制等手段,择时择股获取阿尔法收益,从而跑赢市场。说的残酷点,混合型基金整体跑赢市场,是割了小散的韭菜,否则怎么可能那么大的体量会跑赢市场呢?混合型基金目前有2921只,远远超过股票型基金的1189只,如此大的规模整体跑赢市场,那一定是和散户做了对手盘了。
我们再仔细分析每年的情况,基本上就是大牛市,混合型跑输股票型,股票型跑输指数;但到了大熊市或者震荡市,那么混合型跑赢股票型,股票型跑赢指数。一个牛熊周期下来。结果就是大家看到的,混合型跑赢指数,指数跑赢股票型。
但光有这个结论还没有用,我们不可能买上2921只混合型基金来战胜市场,况且我们还想通过优选跑赢混合型的中位数。
我们先用历史的业绩来挑选基金,第一种方法是去年混合型里排名前10的,经过统计从2007年到2020年13年多,这种方法选出来的基金,年化收益率是8.16%,而原始中位数是8.21%,略微跑输;第二种方法是前5年每年的基金排名超过中位数,举个例子,在2019年年初选择基金的时候,必须2014-2018这5年每年的收益率都必须超过中位数,也就是每年比一半的基金要好,其实符合这个条件的基金并不多,一般平均只有十来只基金,这种方法考量的是历史上收益的稳定性,但13年多年化也只有8.25%,也就是说,不管哪种方法,用历史业绩在混合型基金里选基金,结果大概率和一只大猩猩用飞镖选基金的概率差不多。显然这些仅仅用历史业绩来选基金的方法都不太靠谱。
我们再来看看我前几天说的晨星奖选基金的办法,举例来说,2012年年初公布的当年激进配置型晨星奖是华夏策略混合,混合型基金晨星奖是国投瑞银稳健增长混合,那么我们在次年(2013年)分别选择这两只基金,以此类推。这样就不存在偷用数据的现象了。统计结果表明,从2013年开始到2020年4月17日7年多,沪深300年化是5.93%,对应的全收益年化是8.20%,而近3000只混合型基金的年化中位数是9.45%,而采用前一年的激进配置型晨星奖的获奖基金,年化是15.90%,而混合型基金晨星奖的年化是16.66%,都大幅度超出了沪深300指数、全收益指数和混合型基金的中位数。特别是混合型基金的策略,7年多只有2018年亏损了7.86%,其他年份均是正收益,而2017年、2019年的获奖基金广发稳健增长混合,不仅在2018年只亏了7.86%,而且在今年盈利了7.87%。唯一的缺点是这只基金的规模有点大,目前大概是130亿元
望采纳祝你好运
⑷ 什么是量化交易,未来前景如何知道的讲讲。
国外量化交易已经发展了40年左右,量化交易程序换交易占比60%,量化基金规模达到30个亿美元,而国内量化交易起步较晚第一只量化基金在2004年左右,至今量化交易规模不过2万亿RMB,国内现在的量化人才也很缺失,随着过来一批量化交易的海龟回来从事量化交易会一定程度带动行业的发展,但是仍需一定时间,加上国内量化交易政策还不够明朗,整体来说量化交易在国内还是一年蓝海,但是路途并非坦途。
⑸ 配对交易现在还有人做吗具体是怎么操作的
发现可能具有协整性质的股票对。利用的方法为计算两只股票回报的相关系数,选出相关系数高的股票对。
一旦确定了可能具有协整性质的股票对,我们就可以利用统计学的方法来检验这些股票对是否真的具有协整的性质。在这一过程中我们就可以确定协整系数以及价差是否具有均值回归的行为。
最后我们需要确定策略的一些参数,比如利用多长的历史数据来确定股票对是否具有协整性质,当价差偏离均值多远时进场或退场等。
具体实现的细节你可以进入Ricequant社区,搜索配对交易,可以看见完整的过程和相关的代码。
⑹ 对冲基金是什么
采用对冲交易手段的基金称为对冲基金,也称避险基金或套期保值基金。
是指金融期货和金融期权等金融衍生工具与金融工具结合后以营利为目的的金融基金。
它是投资基金的一种形式,意为“风险对冲过的基金”。对冲基金采用各种交易手段进行对冲、换位、套头、套期来赚取巨额利润。这些概念已经超出了传统的防止风险、保障收益操作范畴。加之发起和设立对冲基金的法律门槛远低于互惠基金,使之风险进一步加大。
法律依据:《中华人民共和国证券投资基金法》第一条
为了规范证券投资基金活动,保护投资人及相关当事人的合法权益,促进证券投资基金和资本市场的健康发展,制定本法。
对冲基金交易模式:
在《量化投资—策略与技术》一书中(丁鹏著,电子工业出版社,2012/1),将对冲基金的交易模式总结为4大类型,分别为:股指期货对冲、商品期货对冲、统计对冲和期权对冲。
1,股指期货
股指期货对冲是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限、不同(但相近)类别股票指数合约交易,以赚取差价的行为。股指期货套利分为期现对冲、跨期对冲、跨市对冲和跨品种对冲。
2,商品期货
与股指期货对冲类似,商品期货同样存在对冲策略,在买入或卖出某种期货合约的同时,卖出或买入相关的另一种合约,并在某个时间同时将两种合约平仓。
在交易形式上它与套期保值有些相似,但套期保值是在现货市场买入(或卖出)实货、同时在期货市场上卖出(或买入)期货合约;
而套利却只在期货市场上买卖合约,并不涉及现货交易。 商品期货套利主要有期现对冲、跨期对冲、跨市场套利和跨品种套利4种。
3,统计对冲
有别于无风险对冲,统计对冲是利用证券价格的历史统计规律进行套利的,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。
统计对冲的主要思路是先找出相关性最好的若干对投资品种(股票或者期货等),再找出每一对投资品种的长期均衡关系(协整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓——买进被相对低估的品种、卖空被相对高估的品种,等到价差回归均衡时获利了结即可。
统计对冲的主要内容包括股票配对交易、股指对冲、融券对冲和外汇对冲交易。
4,期权对冲
期权(Option)又称选择权,是在期货的基础上产生的一种衍生性金融工具。从其本质上讲,期权实质上是在金融领域将权利和义务分开进行定价,使得权利的受让人在规定时间内对于是否进行交易行使其权利,而义务方必须履行。
在期权的交易时,购买期权的一方称为买方,而出售期权的一方则称为卖方;买方即权利的受让人,而卖方则是必须履行买方行使权利的义务人。
期权的优点在于收益无限的同时风险损失有限,因此在很多时候,利用期权来取代期货进行做空、对冲利交易,会比单纯利用期货套利具有更小的风险和更高的收益率。
⑺ 选股策略回测用 Matlab 好还是用 Python 好
都是工具,也都可以开发选股策略的回测,推荐Python.理由:Python免费且开源Python编程语言简洁优美Python有众多的量化包,包括获取数据、处理数据、回测、风险分析。目前国外、国内很多平台和项目都是使用PythonPython开发策略,简洁高效,这里举几个例子:1.[量化学堂-策略开发]金叉死叉策略2.[量化学堂-策略开发]海龟策略3.[量化学堂-策略开发]浅谈小市值策略4.[量化学堂-策略开发]多头排列回踩买入策略5.[量化学堂-策略开发]借助talib使用技术分析指标来炒股6.[量化学堂-策略开发]大师系列之价值投资法7.[量化学堂-策略开发]事件驱动策略(基于业绩快报)8.[量化学堂-策略开发]基于协整的配对交易9.[量化学堂-策略开发]使用cvxopt包实现马科维茨投资组合优化:以一个股票策略为例这些策略涵盖了股票量化主要的策略类型,但是使用Python语言,每个策略代码都不多。
⑻ 对冲基金的交易模式是什么样的
一般来说,选择采用对冲交易的方式手段的基金就称之为对冲基金,也可以称作是避险基金或者是套利基金,一般来说,是指金融期货或者是金融期权等金融衍生工具与金融工具结合以后产生以营利为目的的金融基金,它属于投资基金的一种形式,意为风险对冲过的基金。
对冲基金的交易模式有四种,如下:
股指期货
股指期货对冲是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限、不同(但相近)类别股票指数合约交易,以赚取差价的行为。股指期货套利分为期现对冲、跨期对冲、跨市对冲和跨品种对冲。
商品期货
与股指期货对冲类似,商品期货同样存在对冲策略,在买入或卖出某种期货合约的同时,卖出或买入相关的另一种合约,并在某个时间同时将两种合约平仓。在交易形式上它与套期保值有些相似,但套期保值是在现货市场买入(或卖出)实货、同时在期货市场上卖出(或买入)期货合约;而套利却只在期货市场上买卖合约,并不涉及现货交易。 商品期货套利主要有期现对冲、跨期对冲、跨市场套利和跨品种套利4种。
统计对冲
有别于无风险对冲,统计对冲是利用证券价格的历史统计规律进行套利的,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计对冲的主要思路是先找出相关性最好的若干对投资品种(股票或者期货等),再找出每一对投资品种的长期均衡关系(协整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓——买进被相对低估的品种、卖空被相对高估的品种,等到价差回归均衡时获利了结即可。 统计对冲的主要内容包括股票配对交易、股指对冲、融券对冲和外汇对冲交易。
期权对冲
期权(Option)又称选择权,是在期货的基础上产生的一种衍生性金融工具。从其本质上讲,期权实质上是在金融领域将权利和义务分开进行定价,使得权利的受让人在规定时间内对于是否进行交易行使其权利,而义务方必须履行。在期权的交易时,购买期权的一方称为买方,而出售期权的一方则称为卖方;买方即权利的受让人,而卖方则是必须履行买方行使权利的义务人。
期权的优点在于收益无限的同时风险损失有限,因此在很多时候,利用期权来取代期货进行做空、对冲利交易,会比单纯利用期货套利具有更小的风险和更高的收益率。