1. 什么是用户画像
用户画像又称用户角色(Persona),作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。
一般的,用户画像在产品没有上线、市场前景较为模糊、产品需求还需探索的阶段,定性化的用户画像能有效地节省时间、资源,在较短的时间通过桌面研究、访谈等定性化的方法来获得用户画像是一种比较可行和最优的方式。而事实上,用户画像是一种能将定性与定量方法很好结合在一起的载体,通过定量化的前期调研能获得一个对于用户群较为精准的认识,在后期的用户角色的建立中能很好地对用户优先顺序进行排序,将核心的、规模较大的用户着重突出出来。定性化的方法虽然无法对不同单位的特征作数量上的比较和统计分析,但能对观察资料进行归纳、分类、比较,进而对某个或某类现象的性质和特征作出概括,在角色建构的过程中定性化的方式能获得大量用户的生活情境、使用场景、用户心智等资料,进而形成活生生的用户类型。基于后台数据的支持和挖掘,可以用户画像选择将定量化和定性化方法相结合来创建用户画像。
用户画像是在创造一系列的“典型”或者“象征性”的用户,但用户画像的一个更高层次的功用在于使用用户画像融合边缘情况的行为或需求。
2. 什么是用户画像他和CDP客户数据平台有什么关系
用户画像是一种勾画目标用户、联系用户诉求与设计方向的有效工具,已在各领域得到广泛应用。在大数据时代背景下,用户信息充斥在网络中,CDP客户数据平台正是将用户的数据进行采集后智能管理,使得每个具体信息抽象成标签,利用这些标签将用户形象在dm hub中具体化,从而为用户提供有针对性的服务的。
3. 保险业三渠道让大数据红利变现
保险业三渠道让大数据红利变现
大数据时代,数据的价值究竟体现在哪里?保险公司正在用自己的探索给出答案。
据了解,泰康人寿、新华电商等,已率先开启与以BAT(网络、阿里、腾讯)为首的互联网巨头公司的数据合作,最普遍的就是将已有的保险客户数据与互联网公司的大数据进行匹配,完善保险客户的画像。同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
经过这些尝试,保险电商公司进行了更为有的放矢的后续操作,并初步尝到了“甜头”,不仅在营销环节,也在风控环节上。这些成果已包括,精准营销让广告投放的点击率提高360%以上,发现客户的赔付率与其芝麻信用呈现负相关关系,甚至建立骗保风险预估模型。
这仅是开始,新华电商副总裁杨亿认为,大数据将再造保险业价值链,涵盖从产品研发到营销、到理赔管理、再到资产管理的几乎全部环节。
数据与数据融合
互联网创新业务在业内处于领先地位的泰康人寿,对数据有明确定位,其董事长陈东升在2011年就提出“让数据产生红利”的方向。对于大数据,泰康总裁刘经纶认为主要有四大特征:首先是数据体量巨大,第二是数据类型繁多,第三是价值密度偏低,第四是处理的速度更快。
传统保险模式运作下,保险公司评估消费者的风险因素只有性别、年龄等简单维度,这也导致部分保险产品定价保守,且产品同质化。而在大数据时代,风险特征的描述数据极大丰富,保险公司可以通过大数据摸索更全面的风险特征,产品细分和个性化设计成为可能,并精细化风险管理和成本管控。
保险公司对于数据有本能的诉求,但简单获取数据违背商业原则,因此对数据的利用一般并不来自直接共享,而是与拥有用户大数据的互联网巨头公司之间进行数据合作,这在业内已经有了典型。
泰康人寿创新事业部业务发展部总经理毕海在今年6月份举行的第二届互联网大数据与精算创新论坛上表示,正在加深与腾讯、阿里等互联网巨头进行数据方面的合作。
近日也从新华保险的全资电商子公司新华世纪电子商务有限公司(下称“新华电商”)了解到,其正在与网络大数据合作;“大数据工场”是新华电商的三大定位之一。
同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
就数据合作而言,保险业与互联网公司,前者以客户获取、客户维护、客户风险评估为核心诉求,而后者的大数据在用户理解和用户洞察方面有核心优势,双方的业务结合点贯穿从营销到产品研发、再到理赔管理的全流程。
“引流”效果明显
在营销阶段,通过大数据方案,保险电商的交叉销售准确率得到提升。
通过与拥有海量客户社交数据及交易数据的互联网巨头进行大数据合作,泰康人寿的互联网创新产品正在朝精准定价的方向迈进,其从多维的甚至相对混乱的数据中进行筛查,决定保险产品是不是展现在用户面前,也就是实现精准营销。
做到这步很初级,互联网用户可能多少也都已有体会,经常在浏览网页时被推动自己关心或感兴趣的产品,但这点已很重要。
大数据+精准营销,已经被新华电商的一个案例证明,非常有效;至少在“引流”的作用上,精准营销有明显作用。毕竟,互联网业务关注的“流量”、“频率”、“价值的转换”三大要素中,“流量”为首。
已与网络大数据进行合作的新华电商,通过这种合作将保险客户的数据维度进一步丰富,让客户更立体,进一步确定出是谁在买保险,在买哪类保险,他们有什么特征。而事实也证明,这样的尝试已经初步体现出积极效益。
新华电商副总裁杨亿在日前召开的网络世界2015大会上介绍,其在和某大型保险公司的合作中,运用相关模型挖掘成功购买保险产品的高价值客户,分析高价值客户的客群特征,包括基本用户画像和上网行为等,并依此在全网扩充目标客群,最后做在线精准营销的广告投放。上线后的真实效果是,实验组广告点击率比对照组提升了361%。
杨亿称,这说明向同样规模的人群展示广告,经过大数据+精准营销,可以找到更多真正对保险感兴趣的目标客户,促成更多点击与转化。
发挥征信作用
大数据给保险电商的“甜头”没有止步于营销环节。对于以风控为核心竞争力的保险业来说,在理赔管理环节中,如何进一步发挥大数据价值也是重要课题。目前的尝试结果表明,在理赔管理中,大数据可以发挥保险征信的作用。
新华电商将网络对用户的大数据画像和新华保险的真实拒保数据进行融合,通过进行黑名单过滤、重大风险识别以及虚假信息挖掘,建立骗保风险预估模型,提升公司整体业务风险管理能力。
再比如,泰康既有的与阿里数据合作的一个结果表明,对客户的赔付率与其芝麻信用负相关。因此,具有明确数值的芝麻信用可以为其定义客户风险特征提供重要参考。
不仅如此,展望未来,杨亿称,大数据将再造保险价值链。
除了将对除了前述的营销阶段、理赔管理环节产生影响之外,其还将影响到产品研发和资产管理等重要环节。比如,在产品开发阶段,大数据助于预测出险概率、优化定价体系、并采集健康数据用于寿险价值链。
以上是小编为大家分享的关于保险业三渠道让大数据红利变现的相关内容,更多信息可以关注环球青藤分享更多干货
4. 用户画像是什么怎样建立用户画像
用户画像又称用户角色(Persona),作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。
一般的,用户画像在产品没有上线、市场前景较为模糊、产品需求还需探索的阶段,定性化的用户画像能有效地节省时间、资源,在较短的时间通过桌面研究、访谈等定性化的方法来获得用户画像是一种比较可行和最优的方式。而事实上,用户画像是一种能将定性与定量方法很好结合在一起的载体,通过定量化的前期调研能获得一个对于用户群较为精准的认识,在后期的用户角色的建立中能很好地对用户优先顺序进行排序,将核心的、规模较大的用户着重突出出来。定性化的方法虽然无法对不同单位的特征作数量上的比较和统计分析,但能对观察资料进行归纳、分类、比较,进而对某个或某类现象的性质和特征作出概括,在角色建构的过程中定性化的方式能获得大量用户的生活情境、使用场景、用户心智等资料,进而形成活生生的用户类型。基于后台数据的支持和挖掘,可以用户画像选择将定量化和定性化方法相结合来创建用户画像。
用户画像是在创造一系列的“典型”或者“象征性”的用户,但用户画像的一个更高层次的功用在于使用用户画像融合边缘情况的行为或需求。
首先,可以对后台数据进行提取,通过后台数据挖掘了解到用户上网环境的一些关键指标。在对用户使用场景有一些初步把握后,我们随机提取了10万用户UID样本量,获取用户职业身份、年龄、性别、学历、浏览习惯(手机、浏览器),用户的交易偏好等关键因素,进行清洗后,使用SPSS聚类分析确认区分最明显的因素。
其次, 在用户画像的过程中有一个很重要的概念叫做颗粒度,就是我们的用户画像应该细化到哪种程度。举一个极端的例子,如果“用户画像”最细的颗粒度应该是细到每一个用户每一具体的生活场景中,但是这基本上是一个不可能完成的任务,同时如果用户画像的颗粒度太大,对于产品设计的指导意义又相对变小了,所以把握好画像的总体丰富程度显得异常重要了。可通过调查问卷的形式来减小颗粒度。
再次,在前期数据支持下,在这一阶段就需要发挥变性研究的长处了,前期如果是一个搭建骨架的过程,那么这一阶段就是一个塑造一个有血有肉的活体的过程了。重点挖掘其生活情境与使用场景。围绕用户的行为特征,通过添加环境、人际关系、操作熟练程度、使用意向、人口统计学属性等细节对用户进行描述,形成用户画像的框架。此外,对用户画像取合适的名字、适当描述个性,附照片等能使角色更加生动,栩栩如生,更易于设计师形成直观印象。
David Travis认为一个令人信服的用户角色要满足七个条件,即PERSONA
P 代表基本性(Primary research)指该用户角色是否基于对真实用户的情景访谈
E 代表移情性(Empathy)指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引同理心。
R 代表真实性(Realistic)指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物。
S 代表独特性(Singular)每个用户是否是独特的,彼此很少有相似性。
O 代表目标性(Objectives)该用户角色是否包含与产品相关的高层次目标,是否包含关键词来描述该目标。
N 代表数量(Number)用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色。
A 代表应用性(Applicable)设计团队是否能使用用户角色作为一种实用工具进行设计决策
缺点:对于不同的数据来源,可以获得的用户的数据只是少量的。了解不同用户在不同情境(交通过程中,上班途中,睡觉前)的典型使用行为与习惯,在不同情景下,不同典型用户操作行为和习惯有什么不同。同时我们按照职业分类用户的方法可能还存在问题,还需要研究不同行业人士、不同职业背景、不同身份地位的人的行为,细化专业人员与专业行业,以使用行为模式为特征提取共性,探索在不同典型场景开发出新需求点的可能性。
5. 什么是用户画像作用是什么
怎样为用户“画像”?
为用户画像的焦点工作就是为用户打“标签”,而一个标签通常是人为规定的高度精炼的特征标识,如年龄、性别、地域、用户偏好等,最后将用户的所有标签综合来看,基本就可以勾勒出该用户的立体“画像”了。
具体来讲,当为用户画像时,需要以下三个步骤:
首先,收集到用户所有的相关数据并将用户数据划分为静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如浏览网页、搜索商品、发表评论、接触渠道等;
其次,通过剖析数据为用户贴上相应的标签及指数,标签代表用户对该内容有兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等;
最后,用标签为用户建模,包括时间、地点、人物三个要素,简单来说就是什么用户在什么时间什么地点做了什么事。
如何利用用户画像进行精准营销?
消费方式的改变促使用户迫切希望尽快获取自己想要了解的信息,所以说,基于用户画像上的精准营销不管对企业还是对用户来说,都是有需求的,这会给双方交易带来极大便捷,也为双方平等沟通搭建了一个畅通平台。
何谓“用户画像”?
在互联网逐渐步入大数据时代后,不可避免的为企业及消费者行为带来一系列改变与重塑。其中最大的变化莫过于,消费者的一切行为在企业面前似乎都将是“可视化”的。随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精准营销服务,进而深入挖掘潜在的商业价值。于是,“用户画像”的概念也就应运而生。
用户画像,即用户信息标签化,就是企业通过收集与分析消费者社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌,可以看作是企业应用大数据技术的基本方式。用户画像为企业提供了足够的信息基础,能够帮助企业快速找到精准用户群体以及用户需求等更为广泛的反馈信息。
6. 什么是用户画像
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。 其作用大体不离以下几个方面: 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10; 数据挖掘,构建智能推荐系统,利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况; 进行效果评估,完善产品运营,提升服务质量,其实这也就相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务; 对服务或产品进行私人定制,即个性化的服务某类群体甚至每一位用户(个人认为这是目前的发展趋势,未来的消费主流)。比如,某公司想推出一款面向5-10岁儿童的玩具,通过用户画像进行分析,发现形象=“喜羊羊”、价格区间=“中等”的偏好比重最大,那么就给新产品提供类非常客观有效的决策依据。 业务经营分析以及竞争分析,影响企业发展战略
7. 什么是用户画像如何分析用户画像
用户画像:定位用户有很多的方法,比如用户调研、问卷访谈、数据分析、市场调研等等,海量甚至不可计数。我们针对自家产品的特点和自身的实际情况,更多的使用“用户画像”这种方法,来迅速、准确定位服务群体,提供高水准的产品设计服务。
关于如何分析用户画像:业内有很多关于创建用户画像的方法,比如Alen Cooper的“七步人物角色法”,Lene Nielsen的“十步人物角色法”等,这些都是非常好并且非常专业的用户画像方法,值得我们借鉴和学习。事实上,当我们了解了这些方法之后,就会发现这些方法从流程上可以分为3个步骤:获取和研究用户信息、细分用户群、建立和丰富用户画像。在这3大步骤中,最主要的区别在于对用户信息的获取和分析。获取和分析数据使用的工具一般为:Google Analytics;Mixpanel;数极客;友盟;网络分析等
8. 什么是用户画像呢一般用户画像的作用是什么
用户画像又称用户角色,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。
用户画像的PERSONAL八要素
P代表基本性(Primary):指该用户角色是否基于对真实用户的情景访谈;
E代表同理性(Empathy):指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引同理心;
R代表真实性(Realistic):指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物;
S代表独特性(Singular):每个用户是否是独特的,彼此很少有相似性;
O代表目标性(Objectives):该用户角色是否包含与产品相关的高层次目标,是否包含关键词来描述该目标;
N代表数量性(Number):用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色;
A代表应用性(Applicable):设计团队是否能使用用户角色作为一种实用工具进行设计决策。
L代表长久性(Long):用户标签的长久性。
用户画像可以使产品的服务对象更加聚焦,更加的专注。
纵览成功的产品案例,他们服务的目标用户通常都非常清晰,特征明显,体现在产品上就是专注、极致,能解决核心问题。比如苹果的产品,一直都为有态度、追求品质、特立独行的人群服务,赢得了很好的用户口碑及市场份额。
其次,用户画像可以在一定程度上避免产品设计人员草率的代表用户。需要正确的使用用户画像,小心的找准自己的立足点和发力方向,真切的从用户角度出发,剖析核心诉求,筛除产品设计团队自以为是、并扣以“用户”的伪需求。
最后,用户画像还可以提高决策效率。在现在的产品设计流程中,各个环节的参与者非常多,分歧总是不可避免,决策效率无疑影响着项目的进度。而用户画像是来自于对目标用户的研究,当所有参与产品的人都基于一致的用户进行讨论和决策,就很容易约束各方能保持在同一个大方向上,提高决策的效率。
9. 金融产品查询平 台所说的智能匹配和用户画像是什么概念
以搜搜出单App为例,系统会记录和分析用户的行为轨迹与喜好,并从数十万产品的数据库中匹配最适合的金融产品数据,把用户想看、常看的产品智能推荐到首页。