⑴ 下列说法正确的是 A 10年期零息债券的凸度比10年期6%息票的债券要高
选择A、E。
到期时间相同零息债券凸度是大于附息债券的(类似于久期)。
久期相同的情况下,现金流越分散,凸度越大,所以附息的债券大于零息。
对于C,凸度跟债券的到期时间不是简单的正比例关系。
D、举例:可赎回债券
E、正确
⑵ 已知久期凸度利率上升对债券价格的影响,求详细解答带公式
该债券头寸价值变动=100万元*(-1*8*0.25%+150*0.25%*0.25%)=-19062.5元
也就是说利率上升25基点该债券头寸价值下跌19062.5元
⑶ 凸性为正的债券是什么意思怎么看凸性的正负呢
凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的测量。在价格-收益率出现大幅度变动时,它们的波动幅度呈非线性关系。由持久期作出的预测将有所偏离。凸性就是对这个偏离的修正。它由以下公式定义: 无论收益率是上升还是下降,凸性所引起的修正都是正的。因此如果修正持久期相同,凸性越大越好。
⑷ 您好,请问您知道债券的久期与凸度的区别吗
久期项是债券价格与利率关系的一阶导数,凸性是债券价格对利率的二阶导数。
债券价格的实际变动量是久期和凸性两个因素所导致的价格变动部分的叠加。而对于收益率较大幅度的变动,仅仅使用久期的部分作为价格变动的估计是有较大误差的,在这种情况下,债券价格的变化幅度可以通过加总久期和凸性所分别导致的价格变化部分而得到更为准确的估计。具体地说,只要将二者直接进行简单的加总即可。
现实中的应用:若预测收益率将下降,对于久期相同的债券,选择凸性较大的品种较为有利,反之则反。
⑸ 如何理解可售回债券的凸性特征
不止可回售债券啊,绝大多数债券都是呈现正凸性的。(分母上可以乘上2,如果分母不乘2,则要在凸性效应的分母上乘以2)(分母上可以乘上2,如果分母不乘2,则要在凸性效应的分母上乘以2)
从公式上可以看出来,只要涨得快、跌得慢,或者正向价格波动比负向价格波动快,那么凸性就是正的。
可回售债券的凸性可以从两个角度来理解。
1、债券凸性是一种对投资者有利的特性,所以当债券对于投资者有利的时候,会呈现出凸性,即涨得快、跌得慢。对于可售回债券(putable bond),由于嵌入了对投资者有利的期权,所以会呈现出比option-free bond更加大的正凸性。
2、当债券价格低于一定程度的时候,投资者会行使售回权力,所以债券价格理论上不会低于约定的回售价格,只会越来越趋近于回售价格,所以在高利率情况下的曲线会比option-free的债券上移,呈现出更大的凸性。
⑹ 什么是债券凸性(债市)
凸性(convexity) 凸性是指在某一 到期收益率 下,到期收益率发生变动而引起的 价格 变 动幅度的变动程度。凸性是对债券价格曲线弯曲程度的一种度量。 凸性的出现是为了弥补 久期 本身也会随着 利率 的变化而变化的不足。 因为在利率变化比较大的情况下久期就不能完全描述 债券价格 对利率 变动的敏感性。凸性越大,债券价格曲线弯曲程度越大, 用修正久期度量债券的 利率风险 所产生的误差越大。
⑺ 利息率怎样影响债券凸性
凸性的性质是凸性随久期的增加而增加。若收益率、久期(即持续期)不变,票面利率越大,凸性越大。利率下降时,凸性增加。
对于第一句话,实际上就是说债券的市场收益率和债券的剩余期限一定,债券票面利率越低那么久期就越大(这是根据久期的性质),故此凸性越大。
对于第二句话,直接引用凸性的性质来说就是了。
必须注意的这两句话差异在于偿还期即债券的期限与持续期即久期是两个不同的时间概念。
⑻ 金融久期和凸性分别是什么
这需要用到微积分的泰勒展开式
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!·(x-x.)^2+……+f(n)(x.)/n!·(x-x.)^n+Rn
D(久期)=1*PVx1+...n*PVxn)/PVx PVXi表示第i期现金流的现值
即以未来时间发生的现金流,按照目前的收益率折现成现值,再用每笔现值乘以其距离债券到期日的年限求和,然后以这个总和除以债券目前的价格得到的数值。
久期描述了价格-收益率曲线的斜率,凸性描述了曲线的弯曲程度。凸性是债券价格对收益率的二阶导数,是对债券久期利率敏感性的测量。在价格-收益率出现大幅度变动时,它们的波动幅度呈非线性关系。由持久期作出的预测将有所偏离。凸性就是对这个偏离的修正。
如果上面你比较迷茫的话,我现在再来说简单点,不过打字比较麻烦啊
Macaulay久期就是从当前时刻至到期日之间所有现金流流入的加权平均时间间隔。
债券价格B=∑Ci·e^(-y·Ti)
Ci表示各付息日Ti的现金流入 y表示连续复利计算的到期收益率
将B对y求导并除以B取负号就得到了麦考利久期
D=-dB/dy·1/B=∑[Ci·e^(-y·Ti)]·Ti/B
B(y)在y.处一阶泰勒展开为B(y.+△y)=B(y.)+dB/dy·△y
则△B/B=dB/dy·1/B·△y
由D=-dB/dy·1/B得△B/B=-D·△y
若对于给定的收益率变动幅度,久期或修正久期越大,则债券价格的波动率越大。
当△y较大时,为了更精确,需要对B(y)在y.处二阶泰勒展开:
B(y.+△y)=B(y.)+dB/dy·△y+1/2·d²B/dy²·(△y)²
△B/B=dB/dy·1/B·△y+1/2·1/B·d²B/dy²·(△y)²
定义凸度为债券价格对收益率二阶导数除以价格即C=1/B·d²B/dy²
△B/B=-D·△y+1/2·C·(△y)²
当收益率变化很小时,如只有千分之一,则凸度就几乎不起作用,了解了否?
⑼ 凸度的概念
凸度是对债券价格曲线弯曲程度的一种度量。是债券各期现金流之间的比例。凸度具体公式是1/(1+y)^2Σ(T,t=1)Ct(t^2+t)/(1+y)^t。P:债券价格,y:收益率或市场利率,t:债券期数,Ct:债券各期现金流。
凸度是对债券价格曲线弯曲程度的一种度量。严格地讲,凸度是指债券到期收益率发生变动而引起的债券价格变动幅度的变动程度。在价格—收益率出现大幅度变动时,它们的波动幅度呈非线性关系,由久期作出的预测将有所偏离。凸度就是对这个偏离的修正。
含义
是对债券价格曲线弯曲程度的一种度量。严格地讲,凸性是指债券到期收益率发生变动而引起的债券价格变动幅度的变动程度。凸性是指债券价格对收益率的二阶导数,也是对债券久期对利率敏感性的测量。在价格—收益率出现大幅度变动时,它们的波动幅度呈非线性关系,由久期作出的预测将有所偏离。凸性就是对这个偏离的修正。