A. 债券的久期和债券的面值大小没有关系吗
计算是需要的,不过有可能软件把债券票面价值默认为100,因为很多债券期货还有利率期货都是以100为基准来计算的。
B. 一个关于债券久期的计算问题
债券息票为10元,价格用excel计算得,96.30元
久期=(1*10/(1+11%)^1+2*10/(1+11%)^2+3*10/(1+11%)^3+4*10/(1+11%)^4+5*10/(1+11%)^5+5*100/(1+11%)^5)/96.30=4.15
若利率下降1个百分点,债券价格上升=4.15*1%=4.15%
变化后债券价格=96.30*(1+4.15%)=100.30元
当然,以久期衡量的价格变化均为近似值,因为我们知道,当利率变为10%后,就等于票面利率,债券价格应该为100元整。
C. 某债券面值美元,期限5年,年票面利率10%。假设到期收益率为12%。回答下面问题: (1)计算该债券的久期;
持有期=N,面值为A
【A*(1+10%)N(此为‘1+10%’的N次方)-A】/A=12%
算出来A就对了~
也就等于
(1+10%)的N次方-1=12%
或者借助复利终值系数
【A*(F/P,N,10%)-A】/A=12%
也就是求
(F/P,N,10%)=1.12
用插值法
查复利终值系数表,表找到10%利率下的复利终值系数在1.12左右的两个时间(一个系数大于1.12,一个系数小于1.12时),N1 N2
然后用等比三角形的方法解出来
如,N1=3,系数是1.1; N2=4,系数是1.2(这些都查表可得,手里没表,没法具体算出来)
然后
(4-3)/(N-3)=(1.2-1.1)/(1.12-1.1)
N则可求
D. 6年期的债券的面值为1000元,发行价格也为1000元,其息票利率为8%,市场到期收益率也是8%,计算其久期。
实际上你的算法并没有什么问题,实际上你计算过程可以简化,直接提取1000那个分子和分母的公用倍数约掉后可以更直观计算,即8%/(1+8%)+2*8%/(1+8%)^2+3*8%/(1+8%)^3+4*8%/(1+8%)^4+5*8%/(1+8%)^5+6*(1+8%)/(1+8%)^6=4.993年
实际上对于平价发行的债券计算其久期时是可以忽略其面值不计算的,直接用票面利率计算即可,我估计是你的计算式子最后的第六年那里漏掉本金,又或者计算过程出现错误导致做不对。如果债券每年付息次数不同也会改变其久期。
E. 如何计算债券久期
理论价格和实际价格不一样很正常的。因为理论要成立有很多假设,现实市场条件是不满足的。比如用久期计算利率波动带来的债券价格波动,那是只有在波动很小的情况下才准确成立,例如1个BP,但你使用时,往往至少用波动25个BP,误差就很大了。而且影响实际价格的因素除了久期还有别的,例如供求,例如凸性。
F. 某债券面值100元,票面利率5%,每年付息,期限2年。如果到期收益率为6%,那么债券的久期为多少
第一题) 这个是债券定价问题:合理发行价=(100*5%)/1.04+5/1.04^2+100/1.04^2;就是把每年的利息和到期时的本金按市场利率4%进行折现,就得债券的合理发行价了;
第二题) 这个是金边债券的问题 价格=100*5%/0.045 ;就是用每年可得的利息(按票面利率计算)除以当前市场利率0.045。
(6)按面值计算的债券久期扩展阅读:
基本特征:
早的对中国收益率的研究应该是Jamison&Gaag在1987年发表的文章。初期的研究样本数量及所覆盖的区域都很有限,往往仅是某个城市或县的样本。而且在这些模型中,往往假设样本是同质的,模型比较简单。
在后来的研究中,样本量覆盖范围不断扩大直至全国性的样本,模型中也加入了更多的控制变量,并且考虑了样本的异质性,如按样本的不同属性分别计算了其收益率,并进行比较。
这些属性除去性别外,还包括了不同时间、地区、城镇样本工作单位属性、就业属性、时间、年龄等。下面概况了研究的主要结果。
G. 计算债券的久期
时期 现金流 现金流量的现值 t*PVCF^b
1 6 5.6603 5.6603
2 6 5.3400 10.6800
3 106 88.9996 266.9988
总计 100.0000 283.3391
久期=283.3391/100/1.06=2.52
久期即收益率变动一个百分点所引起的价格变动的近似百分比
用泰勒展开价格函数的公式
dP=dP/dY*dY+0.5d^2P/(dY)^2+误差项
这个式子里第一项是久期第二项就是凸性
凸性就是价格函数的二阶导数,是为了更准确的计算收益率的变动导致的债券价格的变动
H. 比较下列两个债券的久期:债券A的息票率6%期限10年按面值出售:B的息票率与期限与A相同,低于面值出售
假设债券面值为A,折现率为R,债券B的售价为B
债券A,B的久期可以这样计算:
DA={[0.06A/(1+R)]*1+[0.06A/(1+R)2]*2+……+[(0.06A+A)/(1+R)6]*6}/A
DB={[0.06A/(1+R)]*1+[0.06A/(1+R)2]*2+……+[(0.06A+A)/(1+R)6]*6}/B
由上面的公式可以看出,当其他条件相同时,只有售价A,B是造成久期不同的原因。又由于A>B,所以DA<DB
I. 某债券面值10000元,已获利息1000元,市场利率为8%,计算债券的久期 谢谢,有加分的!
你的问题问得不太清楚,请补充下
J. 债券久期如何计算
债券久期是债券投资的专业术语,反映的是债券价格相对市场利率正常的波动敏感程度,也就是债券持有到期时间。久期越长,债券对利率敏感度越高,其对应风险也越大。
债券久期计算公式有三种,分别是:
公式一:
(10)按面值计算的债券久期扩展阅读:
债券是政府、企业、银行等债务人为筹集资金,按照法定程序发行并向债权人承诺于指定日期还本付息的有价证券。
债券(Bonds / debenture)是一种金融契约,是政府、金融机构、工商企业等直接向社会借债筹借资金时,向投资者发行,同时承诺按一定利率支付利息并按约定条件偿还本金的债权债务凭证。债券的本质是债的证明书,具有法律效力。债券购买者或投资者与发行者之间是一种债权债务关系,债券发行人即债务人,投资者(债券购买者)即债权人 。
债券是一种有价证券。由于债券的利息通常是事先确定的,所以债券是固定利息证券(定息证券)的一种。在金融市场发达的国家和地区,债券可以上市流通。在中国,比较典型的政府债券是国库券。