㈠ 量化投资与对冲基金的期刊定位
打造量化投资和对冲基金领域顶级期刊,成为国内该领域最具影响力的专业刊物。汇聚理论兼实务界以及政策制定部门的重要观点和研究成果,为国内外金融业界与学界交流提供一流平台。倡导规范科学的研究方法,鼓励理论研究、实证研究与实务应用互相融合促进。坚持严格的匿名审稿制度,精心挑选高水平文章,宁缺勿滥。
本刊包含领域:
金融衍生品 对冲基金
数量化投资 金融风险管理
套利策略研究 程序化交易
高频交易 算法交易
㈡ 毕业论文中的量化方法是什么意思
要有数据,要有模型,明确的数据,而不是单纯的程度描述,都可以叫做量化方法,包括统计分析,指标确定等
㈢ 量化基金有什么优点和缺点
你不努力,没有人能替代你的。27
㈣ 量化投资的主要方法和前沿进展
量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。
㈤ 量化基金的问题
长信量化先锋(519983)
购买金额 持有年限
条件 100万元<=X<500万元 0万元<X<100万元 500万元<=X 5年<=X 3年<=X<5年 1年<=X<3年 0年<X<1年
费率费用 1.00% 1.50% 1000元/笔 0 0.60% 1.20% 1.80%
费率类型 前端 后端
目前,包括光大保德信、上投摩根在内,国内共有13家基金公司成立了公募量化基金。这13只基金分别是光大保德信量化核心、上投摩根阿尔法、嘉实量化(爱基,净值,资讯)阿尔法、中海量化策略(爱基,净值,资讯)、华商动态阿尔法(爱基,净值,资讯)、长盛量化红利(爱基,净值,资讯)策略、富国沪深300(爱基,净值,资讯)、南方策略(爱基,净值,资讯)优化、华泰柏瑞量化先行(爱基,净值,资讯)、长信量化先锋(爱基,净值,资讯)、华富量化生命力、大摩多因子策略和申万菱信量化小盘。
㈥ 量化交易领域有哪些经典学术论文
毕业论文,泛指专科毕业论文、本科毕业论文(学士学位毕业论文)、硕士研究生毕业论文(硕士学位论文)、博士研究生毕业论文(博士学位论文)等,即需要在学业完成前写作并提交的论文,是教学或科研活动的重要组成部分之一。其主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。
其主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。毕业论文应反映出作者能够准确地掌握所学的专业基础知识,基本学会综合运用所学知识进行科学研究的方法,对所研究的题目有一定的心得体会,论文题目的范围不宜过宽,一般选择本学科某一重要问题的一个侧面。
㈦ 量化交易领域有哪些经典学术论文
论点,是正确、鲜明阐述作者观点的句子,是一篇文章的灵魂、统帅。任何一篇文章只有一个中心论点,一般可以有分论点。
论点应该正确、鲜明、概括,是一个完整的判断句,绝不可模棱两可。
①正确性:论点的说服力根植于对客观事物的正确反映,而这又取决于作者的立场、观点、态度、方法是否正确,如果论点本身不正确,甚至是荒谬的,再怎么论证也不能说服人。因此,论点正确是议论文的最起码的要求。
②鲜明性:赞成什么、反对什么,要非常鲜明,千万不能模棱两可,含糊不清。
③新颖性:论点应该尽可能新颖、深刻,能超出他人的见解,不是重复他人的老生常谈,也不是无关痛痒、流于一般的泛泛而谈,应该尽可能独特、新颖。
论点的位置一般有四个:文题、开头、文章中间、结尾。但较多情况是在文章的开头,段落论点也是如此。当开始与结尾出现类似的语句时,开头的为论点,结尾处的是呼应论点。
有的议论文的论点在文章中用明确的语句表达出来,我们只要把它们找出来即可;有的则没有用明确的语句直接表述出来,需要读者自己去提取、概括。概括出的句子不应含有修辞等手法。
注意:反问句与比喻句不能作为论点,必须是陈述句
㈧ 量化基金的投资策略
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1、量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2、量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3、股指期货套利
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4、商品期货套利
商品期货套利盈利的逻辑原理是基于以下几个方面 :(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。(2)由于价格的波动性,价格差价经常出现不合理。(3)不合理必然要回到合理。(4)不合理回到合理的这部分价格区间就是盈利区间。
5、统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6、期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7、算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8、资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。
㈨ 量化交易领域有哪些经典学术论文
一、选题 选题在学术论文写作中具有头等重要的意义。这是因为,只有研究有意义的课题,才能
获得好的效果,对科学事业和现实生活有益处;而一项毫无意义的研究,即使研究得再好, 论文写作得再美,也是没有科学价值的。钱学森教授认为:“研究课题要紧密结合国家的需 要。……在研究方法上要防止钻牛角尖,搞烦琐 哲学 。 目前 在 社会 科学中,有的人就古人的 一句话大作文章,反复考证,写一大篇论文,我看没有什么意思。”因此,我们要选择有科 学价值的课题进行研究和写作。
那么,应该根据哪些原则来选题呢?
(一)具有科学性。它应包括:急待解决的课题;科学上的新发现,新创造;学科上短
缺或空白的填补; 通行说法的纠正;前人理论的补充;等等。
(二)有利于展开。指的是:要有浓厚的兴趣;能发挥业务专长;先易后难,大小适中;
已占有一定的资料;能得到导师指导;在一定时间内能完成;对题目加以限定。
注意事项
1、摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。
2、不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》,摘要的开头就不要再写:“为了……,对几种中国兰种子试管培养根状茎的发生进行了研究”。
3、结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦不足取。摘要不分段。
4、用第三人称。建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法标明一次文献的性质和文献主题,不必使用“本文”、“作者”等作为主语。
5、要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。
6、除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。
7、不用引文,除非该文献证实或否定了他人已出版的著作。
8、缩略语、略称、代号,除了相邻专业的读者也能清楚理解的以外,在首次出现时必须加以说明。科技论文写作时应注意的其他事项,如采用法定计量单位、正确使用语言文字和标点符号等,也同样适用于摘要的编写。摘要编写中的主要问题有:要素不全,或缺目的,或缺方法;出现引文,无独立性与自明性;繁简失当。
㈩ 谁来帮帮我啊!!毕业论文实在不会写了,老师让量化分析,不知道商业化程度、游客体验性等等这些怎么量化
做定量分析,问卷法最常用,去做调查,最后把问卷的数据收集起来分析