導航:首頁 > 產品平台 > 保險公司大數據平台案例

保險公司大數據平台案例

發布時間:2021-10-15 22:49:51

保險行業大數據應用

5月27日,由《中國保險報》主辦的「保險業大數據應用系列沙龍」第二期活動在廣州舉行。與會人士針對保險業如何應用大數據「洞察客戶」的主題進行探討。
近年來,保險業大數據應用已經深入到各個業務條線,在利用大數據洞察客戶方面,各家保險機構都有不同程度的探索。不過,在具體的探索實踐中,行業也存在痛點。例如如何挖掘客戶、挖潛客戶,乃至令客戶資源在公司內部的各個業務條線得到共享。
沙龍環節
亞太財險互聯網產品總監萬鵬
中小保險公司更加應該應用關注大數據的使用
個人認為,現在保險業圍繞著數據方面存在的幾個誤區。例如,香港地區700萬人的一個城市,現在財產保險公司是110家,咱們大陸不到80家。那麼多的大陸人去買香港保險,因為是產品有特色,為什麼產品有特色,是對數據進行了分析以後,精準地進行了相應的營銷,或者是一個推廣。那麼我個人認為互聯網從保險公司的角度,應該真正地體現價值,就是從茫茫的人海中篩選出來你想要的客戶,然後給他適合他需要的產品,這個產品不一定是便宜的。
在我們保險公司可能還沒想明白,或者是准備行動的時候,跟我們相關關聯密切的保險中介已經是有相當一批在積極地行動之中,包括數據應用,包括手機移動端的APP的完善,包括小閉環的生態圈,網上商城,積分兌換,發紅包等等,比很多保險公司玩得還嗨,這個希望引起或者倒逼我們保險公司的人要想得出來。
最後的落腳點,就是解決之道,保險業的解決之道是什麼?我認為,就像我正在做的一件事情叫做搭建數據共享聯盟,而且在現在時代下,我認為中小保險公司更加應該關注大數據的使用。

擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"

⑵ 大數據在保險中的實時應用

大數據在保險中的實時應用
幾十年來,保險業一直在努力處理交易風險管理方面的數據。電信與數據融合的前沿趨勢讓保險公司對客戶行為有了新的認知,而這被稱之為「大數據」。數據具有廣泛性、多樣性的特點,特別是能將傳統的關系型資料庫管理技術推向極致,並且讓人們越來越關注數據管理的新方法。大數據、分析和數據管理齊頭並進;美國1.1萬億美元保險市場的各家公司正在爭先恐後地開展自己的數據分析實踐。
大數據的實時應用案例
大數據技術可以使公司評估非結構化數據由不可行變為可行。這里將介紹一些大數據技術在保險領域的應用案例。
欺詐識別
大數據已經幫助保險人做出了改變。而今他們超越了以索賠為中心和以人為中心的演算法欺詐檢測技術。這些技術側重於分析索賠方、保險供應方和其他的信息來源(例如,同一個被保險人提交了多少份類似的索賠請求),並擴展到防火牆之外的數據源,以便基於外部信息分析(例如隊列分析 - 使用一個人的社交圈子來分析相關個體之間的類似行為),這里考慮到的是一群互相聯系的人而不僅僅是一個人。

在美國,每年健康保險欺詐給保險業帶來大約700億到2600億美元的損失;歐盟也有300億到1000億美元的損失。
欺詐檢測和預防主要通過兩種方法實現:
基於實時數據分析的欺詐審計規則(基於歷史數據的傳統類型)
欺詐預測記分卡(基於實時數據的新類型)
客戶關系管理(CRM)
所有的非結構化數據都可以提供給所有的保險公司,這可以成為「大數據分析」方法的基礎。一些非結構化數據源包括:
客戶線上文檔
如果這些文檔可以被輕松搜索到並且能匯集到企業的數據管理平台,那麼保險公司就可以獲得關於客戶的大量信息,包括對非標准、非結構化的生命健康的醫療報告信息,以及再保險和大型商業財產保險部門的信息。
客戶關懷通話記錄
這些內容包含了客戶來電自由形式的代表性評論,這些評論可以用來進行市場情緒調研,有助於形成策略和付諸實踐,以提高客戶的保留率,減少客戶流失。
點擊流數據
由面向客戶的網站生成,可以分析這些數據,以發現顯示客戶傾向的瀏覽模式,尤其是當與呼叫中心記錄相關的時候,找出那些客戶在網路交互後立即呼叫的例子。

索賠管理
大數據也與索賠管理息息相關:運營商希望在索賠流程期間保存好圖像、視頻和文本標記(例如,來自警察檢查員或拖車司機的汽車保險索賠的文本標記)。結合投保人和受益人幾個實體(受益人、投保人、保險人)的匯總信息對非結構化數據的大數據分析變得尤為重要。
承保
在再保險和大型商業保險部門,大量的支持信息會作為信息提交的一部分(例如,損失歷史、財產計劃、車輛調度和董事的詳細信息)。
大數據技術使保險公司能夠快速地存儲和訪問任何數據,以便他們能夠通過分析來突出異常、某種模式和部分重點——這是人工閱讀文檔時代非常困難的事情。自動化數據管理的能力,以及記錄支持文檔的能力,使保險公司能夠創建風險和客戶檔案,這在整個公司中都是統一可審計的並且能夠提供豐富的分析資料。

⑶ 保險公司搭建基礎數據平台

1、阿里雲:如果阿里雲說自己排第二的話,估計沒人敢排第一了,阿里的大數據布局應該是完整的了,從數據的獲取到應用到生態、平台,不愧是大數據行業領導者!
2、華為雲:整合了高性能的計算和存儲能力,為大數據的挖掘和分析提供專業穩定的IT基礎設施平台,近來華為大數據存儲實現了統一管理40PB文件系統。(華為雲好像目前是不怎麼對外開放的)
3、網路:作為國內綜合搜索的巨頭、行業老大,它擁有海量的數據,同時在自然語言處理能力和機器深度學習領域擁有豐富經驗。
4、我們的DDP大數據平台:DDP大數據基礎平台,以大數據技術為基礎為企業客戶搭建統一的大數據共享和分析平台。實現對各類業務進行前瞻性預測及分析,為各層次用戶提供統一的決策分析支持,提升數據共享與流轉能力。DDP著力為客戶構建統一的數據存儲和數據處理資源,圍繞企業業務開展大數據應用建設,最終形成面向服務化的數據資產。

擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"

⑷ 保險公司要和醫療機構進行數據對接,搭建大數據平台,有好的方法嗎

討論幾種針對各種軟體系統的數據採集的方式方法。重點關注它們的實現過程、各自的優缺點。
軟體介面對接方式
開放資料庫方式
基於底層數據交換的數據直接採集方式
1、軟體介面對接方式
各個軟體廠商提供數據介面,實現數據匯集,為客戶構建出自己的業務大數據平台;
介面對接方式的數據可靠性較高,一般不存在數據重復的情況,且都是客戶業務大數據平台需要的有價值的數據;同時數據是通過介面實時傳遞過來,完全滿足了大數據平台對於實時性的要求。
但是介面對接方式需花費大量人力和時間協調各個軟體廠商做數據介面對接;同時其擴展性不高,比如:由於業務需要各軟體系統開發出新的業務模塊,其和大數據平台之間的數據介面也需要做相應的修改和變動,甚至要推翻以前的所有數據介面編碼,工作量很大且耗時長。
2、開放資料庫方式
一般情況,來自不同公司的系統,不太會開放自己的資料庫給對方連接,因為這樣會有安全性的問題。為實現數據的採集和匯聚,開放資料庫是最直接的一種方式。
不同類型的資料庫之間的連接就比較麻煩,需要做很多設置才能生效,這里不做詳細說明。
開放資料庫方式可以直接從目標資料庫中獲取需要的數據,准確性很高,是最直接、便捷的一種方式;同時實時性也有保證;
開放資料庫方式需要協調各個軟體廠商開放資料庫,其難度很大;一個平台如果要同時連接很多個軟體廠商的資料庫,並且實時都在獲取數據,這對平台本身的性能也是個巨大的挑戰。
3、基於底層數據交換的數據直接採集方式
101異構數據採集的原理是通過獲取軟體系統的底層數據交換、軟體客戶端和資料庫之間的網路流量包,進行包流量分析採集到應用數據,同時還可以利用模擬技術模擬客戶端請求,實現數據的自動寫入。
實現過程如下:使用數據採集引擎對目標軟體的內部數據交換(網路流量、內存)進行偵聽,再把其中所需的數據分析出來,經過一系列處理和封裝,保證數據的唯一性和准確性,並且輸出結構化數據。經過相應配置,實現數據採集的自動化。
基於底層數據交換的數據直接採集方式的技術特點如下:
1)獨立抓取,不需要軟體廠家配合;
2)實時數據採集;
數據端到端的延遲在數秒之內;
3)兼容Windows平台的幾乎所有軟體(C/S,B/S);
作為數據挖掘,大數據分析的基礎;
4)自動建立數據間關聯;
5)配置簡單、實施周期短;
6)支持自動導入歷史數據。
目前,由於數據採集融合技術的缺失,往往依靠各軟體原廠商研發數據介面才能實現數據互通,不僅需要投入大量的時間、精力與資金,還可能因為系統開發團隊解體、源代碼丟失等原因出現的死局,導致了數據採集融合實現難度極大。在如此急迫的需求環境下基於底層數據交換的數據直接採集方式應運而生,從各式各樣的軟體系統中開采數據,源源不斷獲取所需的精準、實時的數據,自動建立數據關聯,輸出利用率極高的結構化數據,讓數據有序、安全、可控的流動到所需要的企業和用戶當中,讓不同系統的數據源實現聯動流通,為客戶提供決策支持、提高運營效率、產生經濟價值。

擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"

⑸ 保險公司理賠大數據

任何地方都找不到這個數據,這個數據本身就沒有實際的意義。
舉個簡單的例子,一個人投保保險,申請理賠的事項不屬於保險責任,保險公司自然無法賠付,或者申請的時間超過了責任期限,或者被保險人所患疾病不屬於保障范圍只能,等等一系列的情況,都會引起無法理賠,不可控風險太多,這個數據自然無從統計。

擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"

⑹ 保險大數據平台有哪些內容

一、互聯網保險創新的現狀
根據中國保險行業協會在2015年年初發布的《互聯網保險行業發展報告》顯示,針對經營互聯網保險業務的公司分類,人身險公司有44家,財產險公司有16家,總體佔全行業133家產壽險公司的45%。包括中國人保財險、泰康人壽、平安人壽、太平洋保險、天安財險等在內的多家險企已率先在線上跑馬圈地,中國保險公司與互聯網的深度融合已全面到來。
首先在監管層面,上個月,醞釀已久的《互聯網保險業務監管暫行辦法》終於由中國保監會發布,這標志著中國互聯網保險業務基礎監管規范的形成。《辦法》以鼓勵創新、防範風險和保護消費者權益為基本思路,從經營條件、經營區域、信息披露、監督管理等方面明確了互聯網保險業務經營的基本規則;規定了互聯網保險業務的銷售、承保、理賠、退保、投訴處理及客戶服務等保險經營行為應由保險機構管理負責;強化了經營主體履行信息披露和告知義務的內容和方式,著力解決互聯網自主交易中可能存在的信息不透明、信息不對稱等問題,以最大限度保護消費者的知情權和選擇權。
其次在保險主體方面,早在2013年,中國人保就推出「掌上人保」,並號稱是指尖上的保險;去年,以「理賠簡單,就在天安」為口號的天安財險「車易賠」APP在全國上線;隨後,「中國太保」「大地通保」、「泰康在線」等保險在線服務平台如雨後春筍般出現,可見,拼服務、拼體驗已經成為各家保險主體競爭的主要方向。同時,各家保險公司在立足保險本身的同時,從渠道上也不斷向外圍延伸,分別與P2P平台、信用保證機構等開展不同程度的合作。以下是中國保險行業協會從服務創新、技術創新、渠道創新等三個方面對2014年60家提供互聯網服務的產、壽險公司進行評價後的前15名榜單:
二、互聯網保險創新背後的風險
應該說基於提升客戶體驗的互聯網保險創新,方向是對的。互聯網保險作為一個新興的領域,發展空間巨大,但同時互聯網保險創新也帶來一系列風險和問題。從目前已經暴露的風險來看,主要包括保險產品創新異位、消費者投訴急劇增加、消費者道德風險敞口擴大、風險評估和控制不到位等。
(一)保險產品創新異位
自2013年底由「三馬」投資的眾安在線成立以來,帶動了中國各大保險主體在保險產品上的創新熱潮。盜刷險、高溫險、退貨險、喝麻險、世界盃足球流氓險等創新險種不斷涌現,壽險公司也相繼推出求關愛、愛升級、救生圈等所謂的基於微信平台的「扔撈」產品,名字一個比一個花哨,其中,不乏一些險種初具規模,但更多的是為創新而創新。如世界盃足球流氓險從頭到尾就沒賣出幾份,導致本來就比較便宜的3元/份,到後期直接降價到1分錢/份,變成了一個十足的噱頭。更有甚者,開發出霧霾險、賞月險、搖號險等,嚴重脫離保險的本質。
(二)消費者投訴急劇增加
據保監會近日公布的《關於2015年上半年保險消費者投訴情況的通報》顯示,2015年上半年,中國保監會12378投訴維權熱線全國轉人工呼入總量157544件,同比上升40.24%。而其中,捆綁銷售互聯網產品的投訴占據一定比例,究其原因,很多保險主體互聯網保險業務發展迅速,但管理和服務能力嚴重不足,片面注重銷售前端網路化,後台運營管理卻仍是傳統思維,前端和後台不配套,買時容易退時難,從而導致消費者投訴。
(三)消費者道德風險敞口擴大
目前,各家保險主體在理賠服務上基本上都推出了簡易賠付,即保險公司對於一定金額以下(2000-10000元不等)的保險事故實行簡易賠付,消費者通過保險公司自己推出的APP平台,或拍照、或視頻,將事故現場信息傳輸到保險公司後台,保險公司審核確認後立刻賠付,全程一般在5分鍾左右時間完成。應該說這種做法極大地簡化了理賠程序,縮短了理賠時間,方便了消費者。但是,客觀地講,我們也不得不面對當下國內的基本現狀,國民的平均道德水準有待提高,修理廠、4S店有組織地批量造假,保險欺詐層出不窮,這些無疑都將保險公司的風險敞口無限擴大。
(四)風險評估和管理不到位
保險從本質上是風險轉移的安排,應該有可量化的數據支撐,目前,很多產品的創新,缺少基本的費率釐定、成本測算等程序。同時,保險講究的是大數法則,如果一款產品不能具備一定規模,賠付水平就會極不穩定,風險管理也就無從談起。
三、互聯網保險創新的風險管理
(一)保險產品創新:回歸本質
保險,在法律和經濟學意義上,是一種風險管理方式。因此,保險產品創新的基本原則和底線是創新的產品具有風險管理的可能性,即通過經驗的積累和有效的管理措施能夠降低保險標的風險。這也就是一般情況下地震、颶風等不可抗力不列入保險范圍的根本原因,因為到目前為止,人類還無法通過自身的行為影響上述事件的發生。反觀現在的保險產品創新,霧霾險也好,賞月險也罷,甚至是高溫險,基本上都突破了上述這一基本原則。
之所以會出現現在這種情況,我想主要有兩個方面原因,一是保險本身,在目前的保險市場上,規模產品的同質性非常嚴重,基本相同的條款,基本相同的費率,基本相同的服務,在這種情況下,產品創新的目標已經不再是客戶的「需求」,而是客戶的「眼球」。記得若干年前,有一個保險公司開發了一個險種叫「酒駕險」,從始至終沒賣出一份保單,但公司從上到下都非常開心,因為這個產品在當時引起了包括新聞媒體、監管部門、同業公司以及消費者的極大關注,很好地提高了公司的知名度。二是與目前整個社會的大環境有關,當下,從集體到個體,在物質和經濟的指揮下,每一個社會組織和細胞都在極力獲取盡量多的資源,而忽視了資源本身的效用和價值。正像有一句話所說,走著,走著,忘記了出發的目的。
(二)保險風險管理:大數據為器
1.大數據在費率釐定中的應用。保單的費率設定是保險公司風險管理的源頭,也是一項非常重要的工作,主要目的是使設定的費率對應於投保人的風險等級,風險越小,費率越低,盡量做到公平。確定費率較為關鍵的問題就是找出「影響賠付支出的風險因素或變數」,其實生命表就是「影響賠付支出的風險因素或變數」之一年齡的一個分類。再如,在車險定價中城市交通的擁擠程度、駕駛員的年齡、駕齡、性別、汽車的新舊程度等都可能是「影響賠付支出的風險因素或變數」,而這些因素或變數就是可以通過大量數據分析和處理來確定。
2.大數據在風險評估中的應用。在大數據時代,風險評估已經不僅僅局限於公司的歷史數據、行業的歷史數據,無論是風險特徵的描述還是數據資源的獲取都更加便利。首先在占據財產險市場70%以上份額的車險領域,保險公司可以獲取三個層級數據來支撐風險評估,第一層級是核心層,包括公司和行業數據,第二層級是緊密層,包括車型、汽車零整比、二手車等數據;第三層級是外圍移動層,包括利用車載感測設備收集駕駛員行為數據等。同時,對於保險公司的精算師來講,更多、更廣的數據獲取,可以更精確地識別個體對象的潛在風險,建立更加有效的數據模型,不斷改善和提高精算的精準程度,以幫助判斷和評估風險以及風險准備金。
3.大數據在反理賠欺詐中的應用。在確保數據資源的情況下,通過完整的、多樣化的數據(數據包括但不限於公司內部保單及理賠歷史記錄、行業數據、徵信記錄、公共社交網路數據、犯罪記錄等),輔之以有效的演算法和模型,來識別理賠中可能的欺詐模式、理賠人潛在的欺詐行為以及可能存在的欺詐鏈條,應該是未來反理賠欺詐的主要方向。而對於整個中國保險行業來講,盡快建立起一套行業級的保險數據信息平台,是反理賠欺詐的關鍵。目前,上海、江蘇等省市已經實現理賠信息數據共享,在這些地區反理賠欺詐行為的成效明顯提高。
4.大數據在保險行業風險管理中應用之核心—數據整合。目前保險公司的數據有行業平台的同業數據、前端客戶APP導入(或現場出單)數據,中端中介、渠道、理賠、呼叫數據,後端財務收付數據,另外,還有定價系統的汽車零配件數據、人事系統的人員數據、稽核審計風控系統的風控數據等,種類繁多和龐雜,因此,急需建立大數據平台進行數據整合,統一數據存儲和傳遞標准,並將不同系統進行數據打通,再根據不同需要進行數據挖掘。
(三)保險風險控制:新技術應用
未來,新技術、新設備的應用將成為保險行業風險控制的主要途徑。在承保環節,基於大數據基礎的數據分析技術將在第一時間立體呈現保險標的各項數據和特徵,為承保決策和政策提供第一手資料,從源頭控制風險。在理賠環節,新技術、新設備同樣將被廣泛應用。在車輛保險領域,通過裝載在車上的無線電子設備,運用通訊網路,實現對車輛、道路以及行車駕駛員進行靜、動態信息提取和行為記錄,從而監督行車駕駛員人的行為風險和道德風險,並進行出險前預防、出險中響應和出險後處理,從而使保險事故管理變被動為主動,降低理賠成本。在人壽保險領域,利用能夠實時監控人體健康情況的可穿戴設備,來獲取和細分不同群體、不同年齡的人體健康和生死概率,並適時向客戶提供飲食、健身等方面的建議,從而降低投保人的醫療費用。在家庭財產險領域,通過智能家居系統對住宅進行遠程監控並及時發現和緩解風險,當家中發生煤氣泄漏或水管爆裂,可自動關掉閥門,從而減輕損失等。
任何事物的發展,都要有與之相對應的配套管理措施,互聯網保險創新也不例外。今後相當長一段時間,互聯網保險創新都將在路上,基於互聯網保險創新的風險管理也必將亦步亦趨,緊緊跟隨。

擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"

閱讀全文

與保險公司大數據平台案例相關的資料

熱點內容
炒股可以賺回本錢嗎 瀏覽:367
出生孩子買什麼保險 瀏覽:258
炒股表圖怎麼看 瀏覽:694
股票交易的盲區 瀏覽:486
12款軒逸保險絲盒位置圖片 瀏覽:481
p2p金融理財圖片素材下載 瀏覽:466
金融企業購買理財產品屬於什麼 瀏覽:577
那個證券公司理財收益高 瀏覽:534
投資理財產品怎麼繳個人所得稅呢 瀏覽:12
賣理財產品怎麼單爆 瀏覽:467
銀行個人理財業務管理暫行規定 瀏覽:531
保險基礎管理指的是什麼樣的 瀏覽:146
中國建設銀行理財產品的種類 瀏覽:719
行駛證丟了保險理賠嗎 瀏覽:497
基金會招募會員說明書 瀏覽:666
私募股權基金與風險投資 瀏覽:224
怎麼推銷理財型保險產品 瀏覽:261
基金的風險和方差 瀏覽:343
私募基金定增法律意見 瀏覽:610
銀行五萬理財一年收益多少 瀏覽:792