㈠ 如何建立股票模型
財務管理
其實這個應該不難 但你的問題問得有些模糊
㈡ 怎麼做股票模型
我也曾今也想到過這個問題。但是,告訴你一個不幸的消息,股票不可以用模型製作,我以前試過用指數模型和高斯分布做過,但後來去給一個博士談到這個問題的時候。最終達成一致共識,股票不能建立模型。只能在股票和其他衍生工具之間建立交易模型,例如capm,b-s模型。如果是老師布置的作業,你就給她說,不能建立模型。
㈢ 如何使用matlab建立股票交易模型
您好,針對您的問題,國泰君安上海分公司給予如下解答
能否麻煩您把問題再詳細點敘述,或者直接與我們聯系,人工解答。
歡迎您登錄國泰君安證券上海分公司網站人工咨詢。
回答人:國泰君安證券上海分公司理財顧問曾經理
工號:011891
國泰君安證券——網路知道企業平台樂意為您服務!
如仍有疑問,歡迎向國泰君安證券上海分公司官網或企業知道平台提問。
㈣ 如何設計股票模型
股票模型就是對於現實中的個股,為了達到盈利目的,作出一些必要的簡化和假設,運用適當的數學分析,得到一個數學結構。
股票建模是利用數學語言(符號、式子與圖象)模擬現實的模型。把現實模型抽象、簡化為某種數學結構是數學模型的基本特徵。它或者能解釋特定現象的現實狀態,或者能預測到對象的未來狀況,或者能提供處理對象的最優決策或控制。
建模過程
模型准備 :了解個股的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設 :根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立 :在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具)
模型求解 :利用獲取的數據資料,對模型的所有參數做出計算(估計)。
模型分析 :對所得的結果進行數學上的分析。
模型檢驗 :將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,在次重復建模過程。
模型應用 :應用方式因問題的性質和建模的目的而異。
㈤ 股票交易模型如何建立,怎麼驗證一個成功率高的交易
你好,交易模型即交易理論、交易方法,投資者構建一套完整的交易模型需要經過以下幾個步驟:
1、認清自己的投資偏好,是對自己的一個定位,投資者可以根據自己的性格特點和交易風格先把自己的交易流派區分清楚:趨勢交易者,短線交易者,日內交易者等。
2、在認清自己的投資偏好之後,選擇有針對性的技術指標進行學習,比如,對於趨勢交易者,可以學習均線理論,根據均線理論中多頭排列的特點進行買賣。
3、紙上得來終覺淺,絕知此事需躬行,投資者可以先進行模擬操作,檢驗技術指標的正確性,對自己的交易方法進行總結,歸納出自己交易方法的框架和思路,如果發現自己以往的交易方法和自己的交易流派有沖突時最好重新總結歸納另一套方法。
4、模擬檢驗完成之後,進行實戰,在實戰中,投資者應嚴格按照交易模型執行。
㈥ 股票交易的模型怎麼樣進行編寫呢下面我有個思路請幫忙看看能否編寫出來
股市中是沒有固態交易模型的。因為每隻涉及的時間和環境是不同的,俗話說水無常勢就是對股市的寫照。所有的所謂模型在今天實用,明天就不一定適用,在這只股票上實用,在其他股票上就不一定適用,這就是規律。就像水一樣,裝在圓形的容器里就是圓形的,裝在方形的容器里就是方的。。。。。。。所謂莊家就是裝水的人,今天可以裝在方形的容器里,明天可以裝在圓形的容器里,不要夢想通過所謂的指標、模型輕松賺錢。沒有比炒股更復雜的事情了!
㈦ 如何建立一個股票量化交易模型並模擬
用文化財經軟體,編寫程序化交易系統,具體參考官網教程
㈧ 如何建立一個股票量化交易模型並模擬
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
㈨ 股票交易模型案例
一般股票交易的模型就是量化交易,你可以自己先下載量化軟體看看已經有的指標,再進行優化
㈩ 舉例說明如何構建股票市場模型
考試沒考到