① 為期十年的面值為100元的零息債券以102元溢價出售 其麥考利久期為
這個不用計算的,本身麥考利久期的相關定理已經明確零息債券的久期等於債券期限,這債券是10年,那麼其久期也是10年。
② 為什麼零息票債券的期限與久期相等
久期的一個含義就是表示債券的平均償還期限,考慮零息債券只在債券到期時償還本金,即只有一個償還期限。
即P=FV(也即債券面值)/(1+r)^n 其中n為時間,r為貼現率。
從公式中就可以看出r變動都會引起零息債券的價格P的變動。零息債券的久期反而是發反映了該債券對利率波動的敏感度。
債券市值的變動百分比=-利率變動的百分點*久期
(2)零息債券的麥考利久期擴展閱讀:
在債券分析中,久期已經超越了時間的概念。修正久期大的債券,利率上升所引起價格下降幅度就越大,而利率下降所引起的債券價格上升幅度也越大。
可見,同等要素條件下,修正久期小的債券比修正久期大的債券抗利率上升風險能力強;但相應地,在利率下降同等程度的條件下,獲取收益的能力較弱。
正是久期的上述特徵給我們的債券投資提供了參照。當我們判斷當前的利率水平存在上升可能,就可以集中投資於短期品種、縮短債券久期;而當我們判斷當前的利率水平有可能下降,則拉長債券久期、加大長期債券的投資,這就可以幫助我們在債市的上漲中獲得更高的溢價。
③ 有效久期、麥考林久期和修正久期有什麼區別
1、對時間價值的考慮不同:
修正久期在麥考利久期的基礎上,考慮了久期的時間價值,可以說對麥考利久期的動態修正。
2、數學模型不同:
有效久期是債券價格曲線的切線,衡量的是區間價格變動的敏感程度,計算方法類似彈性可用於求已知價格變動的債券。
有效久期是指債券或其他金融工具的價格對利率敏感度的直接計算方法。即通過計算由利率的微小變動帶來的債券價格差異而得出的價格變動百分比。
久期是表示對未來收入的加權等待時間,也是債券價格對利率的敏感程度。
有效久期是債券價格曲線的切線,衡量的是區間價格變動的敏感程度。
3、計算公式不同:
麥考林久期、修正久期分零息與付息債券,對於零息MAC DUR=到期時間(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表計算復利次數.對於付息債券,MAC DUR=加權公式。就是每期支付折現除以現值乘與期數那公式。
修正久期=MAC/[1+(Y/N)],無期限債券,永續,特殊方法計算。
麥考利久期計算方法
麥考利久期等於債券每次息票或債券本金支付時間的加權平均 。
假設一張T年期債券,t時刻的現金支付為
(3)零息債券的麥考利久期擴展閱讀:
久期用途
在債券分析中,久期已經超越了時間的概念。修正久期大的債券,利率上升所引起價格下降幅度就越大,而利率下降所引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券比修正久期大的債券抗利率上升風險能力強;但相應地,在利率下降同等程度的條件下,獲取收益的能力較弱。
正是久期的上述特徵給我們的債券投資提供了參照。當我們判斷當前的利率水平存在上升可能,就可以集中投資於短期品種、縮短債券久期;而當我們判斷當前的利率水平有可能下降,則拉長債券久期、加大長期債券的投資,這就可以幫助我們在債市的上漲中獲得更高的溢價。
④ 麥考林久期和修正久期有什麼區別
久期是表示對未來收入的加權等待時間,也是債券價格對利率的敏感程度有效久期是債券價格曲線的切線,衡量的是區間價格變動的敏感程度,計算方法類似彈性,可用於求已知價格變動的債券,可以計算資產抵押債券.麥考林久期(MAC DUR),修正久期(MOD DUR)分零息與付息債券,對於零息MAC DUR=到期時間(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表計算復利次數.對於付息債券,MAC DUR=加權公式(不好打),就是每期支付折現除以現值乘與期數那公式,修正久期=MAC/[1+(Y/N)],無期限債券,永續,特殊方法計算還不懂QQ 931117453
⑤ 麥考利久期公式詳解
修正久期=麥考利久期÷[1+(Y/N)]
在本題中,1+Y/N=1+11.5%/2=1.0575
所以修正久期=13.083/1.0575=12.37163
D是最合適的答案
⑥ 由於零息債券的久期等於其期限,所以零息債券針對利率的價格敏感度與利率水平無關嗎
你好,首先要明白就久期是什麼意思,在債券投資里,久期被用來衡量債券或者債券組合的利率風險,一般來說,久期和債券的到期收益率成反比,和債券的剩餘年限及票面利率成正比。那麼就是說,零息債券的久期等於它的期限,並不意味著債券的價格敏感度就與利率水平無關了。考慮這個問題應該要從零息債券的定價公式出發:
即P=FV(也即債券面值)/(1+r)^n 其中n為時間,r為貼現率。
從式子中就可以看出r變動都會引起零息債券的價格P的變動。零息債券的久期反而是發反映了該債券對利率波動的敏感度。
債券市值的變動百分比=-利率變動的百分點*久期
⑦ 零息債券的久期是不是就等於它的剩餘期限如果不是,那是多少答對給十分.
算出來A就對了~也就等於(1+10%)的N次方-1=12% 或者藉助復利終值系數【A*(F/P,N,10%)-A】/A=12% 也就是求 (F/P,N,10%)=1.12
⑧ 請問什麼是久期什麼是麥考利久期
久期,也可以翻譯為麥考利持續時間。是由到期收益率的定義推導出來的。到期收益率公式知道吧,等式兩邊分別對到期收益率y求導,再在等式兩邊同除以價格p,就將其中一部分定義為D久期。
久期是一種測算債券發生現金流的平均期限的方法,可以用於測度債券對利率變化的敏感性。
弗雷得里克.麥考利根據債券的每次息票利息和本金支付時間的的加權平均來計算久期,稱為麥考利久期
(MACAULAY'S DURATION)。具體的計算將每次債券現金流的現值除以債券價格得到每一期現金支付的權重,並將每一次現金流的時間同對應的權重相乘,最終合計出整個債券的久期。
久期是固定收入資產組合管理的關鍵概念有以下幾個原因:
1、它是對資產組合實際平均期限的一個簡單概括統計。
2、它被看做是資產組合免疫與利率風險的重要工具。
3、是資產組合利率敏感性的一個測度,久期相等的資產對於利率波動的敏感性一致。
到期時間、息票率、到期收益率是決定債券價格的關鍵因素,與久期存在以下的關系:
1、零息票債券的久期等於到它的到期時間。
2、到期日不變,債券的久期隨息票據利率的降低而延長。
3、息票據利率不變,債券的久期隨到期時間的增加而增加。
4、其他因素不變,債券的到期收益率較低時,息票債券的久期較長。
麥考利久期定理:關於麥考利久期與債券的期限之間的關系存在以下6個定理:定理1:只有貼現債券的麥考利久期等於它們的到期時間。定理2:直接債券的麥考利久期小於或等於它們的到期時間。只有僅剩最後一期就要期滿的直接債券的麥考利久期等於它們的到期時間,並等於1。定理3:統一公債的麥考利久期等於(1+1/r),其中r是計算現值採用的貼現率。定理4:在到期時間相同的條件下,息票率越高,久期越短。定理5:在息票率不變的條件下,到期時期越長,久期一般也越長。定理6:在其他條件不變的情況下,債券的到期收益率越低,久期越長。
⑨ 債券 久期是什麼
債券的久期
1.麥考利久期又稱為存續期,是指債券的平均到期時間,從現值角度度量了債券現金流的加權平均年限,即債券投資者收回其全部本金和利息的平均時間。
2.零息債券麥考利久期等於期限。
3.麥考利久期公式:Dmac=-(△P/△y)(1+y)/p。
修正的麥考利久期等於麥考利久期除以(1+y),即: