㈠ 量化投資
沒有你想的書
我多年來都有關注這方面的書 可是也沒有在國內找到
數量化投資是將投資理念及策略通過具體指標、參數的設計,體現到具體的模型中,讓模型對市場進行不帶任何情緒的跟蹤;相對於傳統投資方式來說,具有快速高效、客觀理性、收益與風險平衡和個股與組合平衡等四大特點。量化投資技術幾乎覆蓋了投資的全過程,包括估值與選股、資產配置與組合優化、訂單生成與交易執行、績效評估和風險管理等,在各個環節都有不同的方法及量化模型:
一、估值與選股
估值:對上市公司進行估值是公司基本面分析的重要方法,在「價值投資」的基本邏輯下,可以通過對公司的估值判斷二級市場股票價格的扭曲程度,繼而找出價值被低估或高估的股票,作為投資決策的參考。對上市公司的估值包括相對估值法和絕對估值法,相對估值法主要採用乘數方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;絕對估值法主要採用折現的方法,如公司自由現金流模型、股權自由現金流模型和股利折現模型等。相對估值法因簡單易懂,便於計算而被廣泛使用;絕對估值法因基礎數據缺乏及不符合模型要求的全流通假設而一直處於非主流地位。隨著全流通時代的到來和國內證券市場的快速發展,絕對估值法正逐漸受到重視。
選股:在當前品種繁多的資本市場中,從浩瀚復雜的數據背後選出適合自己投資風格的股票變得越加困難。在基本面研究的基礎上結合量化分析的手段就可以構建數量化選股策略,主流的選股方法如下:
資產配置方法與模型
資產配置類別 資產配置層次 資產配置方法 資產配置模型
戰略資產配置 全球資產配置 大類資產配置 行業風格配置 收益測度 風險測度 估計方法 馬克維茨 MV 模型 均值 -LPM 模型 VaR 約束模型 Black-Litterman 模型
戰術資產配置 ( 動態資產配置 ) 周期判斷 風格判斷 時機判斷 行業輪動策略 風格輪動策略 Alpha 策略 投資組合保險策略
基本面選股:通過對上市公司財務指標的分析,找出影響股價的重要因子,如:與收益指標相關的盈利能力、與現金流指標相關的獲現能力、與負債率指標相關的償債能力、與凈資產指標相關的成長能力、與周轉率指標相關的資產管理能力等。然後通過建立股價與因子之間的關系模型得出對股票收益的預測。股價與因子的關系模型分為結構模型和統計模型兩類:結構模型給出股票的收益和因子之間的直觀表達,實用性較強,包括價值型(本傑明·格雷厄姆—防禦價值型、查爾斯·布蘭迪—價值型等)、成長型(德伍·切斯—大型成長動能、葛廉·畢克斯達夫—中大型成長股等)、價值成長型(沃倫·巴菲特—優質企業選擇法、彼得·林奇—GARP價值成長法等)三種選股方法;統計模型是用統計方法提取出近似線性無關的因子建立模型,這種建模方法因不需先驗知識且可以檢驗模型的有效性,被眾多經濟學家推崇,包括主成分法、極大似然法等。
多因素選股:通過尋找引起股價共同變動的因素,建立收益與聯動因素間線性相關關系的多因素模型。影響股價的共同因素包括宏觀因子、市場因子和統計因子(通過統計方法得到)三大類,通過逐步回歸和分層回歸的方法對三類因素進行選取,然後通過主成分分析選出解釋度較高的某幾個指標來反映原有的大部分信息。多因素模型對因子的選擇有很高的要求,因子的選擇可依賴統計方法、投資經驗或二者的結合,所選的因子要有統計意義上或市場意義上的顯著性,一般可從動量、波動性、成長性、規模、價值、活躍性及收益性等方面選擇指標來解釋股票的收益率。
動量、反向選股:動量選股策略是指分析股票在過去相對短期的表現,事先對股票收益和交易量設定條件,當條件滿足時買進或賣出股票的投資策略,該投資策略基於投資者對股票中期的反應不足和保守心理,在投資行為上表現為購買過去幾個月表現好的股票而賣出過去幾個月表現差的股票。反向選股策略則基於投資者的錨定和過度自信的心理特徵,認為投資者會對上市公司的業績狀況做出持續過度反應,形成對業績差的公司業績過分低估和業績的好公司業績過分高估的現象,這為投資者利用反向投資策略提供了套利機會,在投資行為上表現為買進過去表現差的股票而賣出過去表現好的股票。反向選股策略是行為金融學理論發展至今最為成熟,也是最受關注的策略之一。
二、資產配置
資產配置指資產類別選擇、投資組合中各類資產的配置比例以及對這些混合資產進行實時管理。資產配置一般包括兩大類別、三大層次,兩大類別為戰略資產配置和戰術/動態資產配置,三大層次為全球資產配置、大類資產配置和行業風格配置。資產配置的主要方法及模型如下:
戰略資產配置針對當前市場條件,在較長的時間周期內控制投資風險,使得長期風險調整後收益最大化。戰術資產配置通常在相對較短的時間周期內,針對某種具體的市場狀態制定最優配置策略,利用市場短期波動機會獲取超額收益。因此,戰術資產配置是在長期戰略配置的過程中針對市場變化制定的短期配置策略,二者相互補充。戰略資產配置為未來較長時間內的投資活動建立業務基準,戰術資產配置通過主動把握投資機會適當偏離戰略資產配置基準,獲取超額收益。
三、股價預測
股價的可預測性與有效市場假說密切相關。如果有效市場假說成立,股價就反映了所有相關的信息,價格變化服從隨機遊走,股價的預測就毫無意義,而我國的股市遠未達到有效市場階段,因此股價時間序列不是序列無關,而是序列相關的,即歷史數據對股價的形成起作用,因此可以通過對歷史信息的分析來預測股價。
主流的股價預測模型有灰色預測模型、神經網路預測模型和支持向量機預測模型(SVM)。灰色預測模型對股價的短期變化有很強的預測能力,近年發展起來的灰色預測模型包括GM(1, 1)模型、灰色新陳代謝模型和灰色馬爾可夫模型。人工神經網路模型具有巨量並行性、存儲分布性、結構可變性、高度非線性和自組織性等特點,且可以逼近任何連續函數,目前在金融分析和預測方面已有廣泛的應用,效果較好。支持向量機模型在解決小樣本、非線性及高維模式識別問題中有許多優勢,且結構簡單,具有全局優化性和較好的泛化能力,比神經網路有更好的擬合度。
四、績效評估
作為集合投資、風險分散、專業化管理、變現性強等特點的投資產品,基金的業績雖然受到投資者的關注,但要對基金有一個全面的評價,則需要考量基金業績變動背後的形成原因、基金回報的來源等因素,績效評估能夠在這方面提供較好的視角與方法,風險調整收益、擇時/股能力、業績歸因分析、業績持續性及Fama的業績分解等指標和方法可從不同的角度對基金的績效進行評估。
績效評估模型 / 指標
績效評估准則
擇時 / 股能力
業績歸因分析
風險調整收益
業績持續性
Fama 業績分解
模型 / 指標
T-M 模型
H-M 模型
GII 模型
C-L 模型
資產配置收益
證券選擇收益
行業選擇收益
行業內個股選擇收益
RAROC
Sharp, Stutzer
Treynor, Jensen
, ,
雙向表分析
時間序列相關性
總風險收益
系統風險收益
分散化投資收益
五、基於行為金融學的投資策略
上世紀50~70年代,隨著馬科維茨組合理論、CAPM模型、MM定理及有效市場假說的提出,現代金融經濟學建立了一套成熟的理論體系,並且在學術界占據了主導地位,也被國際投資機構廣泛應用和推廣,但以上傳統經濟學的理論基石是理性人假設,在理性人假設下,市場是有效率的,但進入80年代以後,關於股票市場的一系列研究和實證發現了與理性人假設不符合的異常現象,如:日歷效應、股權溢價之謎、期權微笑、封閉式基金折溢價之謎、小盤股效應等。面對這些金融市場的異常現象,諸多研究學者從傳統金融理論的基本假設入手,放鬆關於投資者是完全理性的嚴格假設,吸收心理學的研究成果,研究股市投資者行為、價格形成機制與價格表現特徵,取得了一系列有影響的研究成果,形成了具有重要影響力的學術流派-行為金融學。
行為金融學是對傳統金融學理論的革命,也是對傳統投資實踐的挑戰。隨著行為金融理論的發展,理論界和投資界對行為金融理論和相關投資策略作了廣泛的宣傳和應用,好買認為,無論機構投資者還是個人投資者,了解行為金融學的指導意義在於:可以採取針對非理性市場行為的投資策略來實現投資目標。在大多數投資者認識到自己的錯誤以前,投資那些定價錯誤的股票,並在股價正確定位之後獲利。目前國際金融市場中比較常見且相對成熟的行為金融投資策略包括動量投資策略、反向投資策略、小盤股策略和時間分散化策略等。
六、程序化交易與演算法交易策略
根據NYSE的定義,程序化交易指任何含有15隻股票以上或單值為一百萬美元以上的交易。程序化交易強調訂單是如何生成的,即通過某種策略生成交易指令,以便實現某個特定的投資目標。程序化交易主要是大機構的工具,它們同時買進或賣出整個股票組合,而買進和賣出程序可以用來實現不同的目標,目前程序化交易策略主要包括數量化程序交易策略、動態對沖策略、指數套利策略、配對交易策略和久期平均策略等。
演算法交易,也稱自動交易、黑盒交易或無人值守交易,是使用計算機來確定訂單最佳的執行路徑、執行時間、執行價格及執行數量的交易方法,主要針對經紀商。演算法交易廣泛應用於對沖基金、企業年金、共同基金以及其他一些大型的機構投資者,他們使用演算法交易對大額訂單進行分拆,尋找最佳路由和最有利的執行價格,以降低市場的沖擊成本、提高執行效率和訂單執行的隱蔽性。任何投資策略都可以使用演算法交易進行訂單的執行,包括做市、場內價差交易、套利及趨勢跟隨交易。演算法交易在交易中的作用主要體現在智能路由、降低沖擊成本、提高執行效率、減少人力成本和增加投資組合收益等方面。主要的演算法包括:交易量加權平均價格演算法(VWAP)、保證成交量加權平均價格演算法(Guaranteed VWAP)、時間加權平均價格演算法(TWAP)、游擊戰演算法(Guerrilla)、狙擊手演算法(Sniper)、模式識別演算法(Pattern Recognition)等。
綜上所述,數量化投資技術貫穿基金的整個投資流程,從估值選股、資產配置到程序化交易與績效評估等。結合量化投資的特點及我國證券市場的現狀,好買認為量化投資技術在國內基金業中的應用將主要集中在量化選股、資產配置、績效評估與風險管理、行為金融等方面,而隨著包括基金在內的機構投資者佔比的不斷提高、衍生品工具的日漸豐富(股指期貨、融資融券等)以及量化投資技術的進步,基金管理人的投資策略將會越來越復雜,程序化交易(系統)也將有快速的發展。
㈡ 量化投資的主要方法和前沿進展
量化投資是通過計算機對金融大數據進行量化分析的基礎上產生交易決策機制。設計金融數學和計算機的知識和技術,主要有人工智慧、數據挖掘、小波分析、支持向量機、分形理論和隨機過程這幾種。
1.人工智慧
人工智慧(Artificial Intelligence,AI)是研究使用計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規劃等)的學科,主要包括計算機實現智能的原理、製造類似於人腦智能的計算機,使計算機能實現更高層次的應用。人工智慧將涉及計算機科學、心理學、哲學和語言學等學科,可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智慧與思維科學的關系是實踐和理論的關系,人工智慧是處於思維科學的技術應用層次,是它的一個應用分支。
從思維觀點看,人工智慧不僅限於邏輯思維,還要考慮形象思維、靈感思維才能促進人工智慧的突破性發展,數學常被認為是多種學科的基礎科學,因此人工智慧學科也必須借用數學工具。數學不僅在標准邏輯、模糊數學等范圍發揮作用,進入人工智慧學科後也能促進其得到更快的發展。
金融投資是一項復雜的、綜合了各種知識與技術的學科,對智能的要求非常高。所以人工智慧的很多技術可以用於量化投資分析中,包括專家系統、機器學習、神經網路、遺傳演算法等。
2.數據挖掘
數據挖掘(Data Mining)是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的,但又是潛在有用的信息和知識的過程。
與數據挖掘相近的同義詞有數據融合、數據分析和決策支持等。在量化投資中,數據挖掘的主要技術包括關聯分析、分類/預測、聚類分析等。
關聯分析是研究兩個或兩個以上變數的取值之間存在某種規律性。例如,研究股票的某些因子發生變化後,對未來一段時間股價之間的關聯關系。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。一般用支持度和可信度兩個閾值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。
分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,並用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的演算法而求得分類規則。分類可被用於規則描述和預測。
預測是利用歷史數據找出變化規律,建立模型,並由此模型對未來數據的種類及特徵進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。
聚類就是利用數據的相似性判斷出數據的聚合程度,使得同一個類別中的數據盡可能相似,不同類別的數據盡可能相異。
3.小波分析
小波(Wavelet)這一術語,顧名思義,小波就是小的波形。所謂「小」是指它具有衰減性;而稱之為「波」則是指它的波動性,其振幅正負相間的震盪形式。與傅里葉變換相比,小波變換是時間(空間)頻率的局部化分析,它通過伸縮平移運算對信號(函數)逐步進行多尺度細化,最終達到高頻處時間細分,低頻處頻率細分,能自動適應時頻信號分析的要求,從而可聚焦到信號的任意細節,解決了傅里葉變換的困難問題,成為繼傅里葉變換以來在科學方法上的重大突破,因此也有人把小波變換稱為數學顯微鏡。
小波分析在量化投資中的主要作用是進行波形處理。任何投資品種的走勢都可以看做是一種波形,其中包含了很多噪音信號。利用小波分析,可以進行波形的去噪、重構、診斷、識別等,從而實現對未來走勢的判斷。
4.支持向量機
支持向量機(Support Vector Machine,SVM)方法是通過一個非線性映射,把樣本空間映射到一個高維乃至無窮維的特徵空間中(Hilbert空間),使得在原來的樣本空間中非線性可分的問題轉化為在特徵空間中的線性可分的問題,簡單地說,就是升維和線性化。升維就是把樣本向高維空間做映射,一般情況下這會增加計算的復雜性,甚至會引起維數災難,因而人們很少問津。但是作為分類、回歸等問題來說,很可能在低維樣本空間無法線性處理的樣本集,在高維特徵空間中卻可以通過一個線性超平面實現線性劃分(或回歸)。
一般的升維都會帶來計算的復雜化,SVM方法巧妙地解決了這個難題:應用核函數的展開定理,就不需要知道非線性映射的顯式表達式;由於是在高維特徵空間中建立線性學習機,所以與線性模型相比,不但幾乎不增加計算的復雜性,而且在某種程度上避免了維數災難。這一切要歸功於核函數的展開和計算理論。
正因為有這個優勢,使得SVM特別適合於進行有關分類和預測問題的處理,這就使得它在量化投資中有了很大的用武之地。
5.分形理論
被譽為大自然的幾何學的分形理論(Fractal),是現代數學的一個新分支,但其本質卻是一種新的世界觀和方法論。它與動力系統的混沌理論交叉結合,相輔相成。它承認世界的局部可能在一定條件下,在某一方面(形態、結構、信息、功能、時間、能量等)表現出與整體的相似性,它承認空間維數的變化既可以是離散的也可以是連續的,因而極大地拓展了研究視野。
自相似原則和迭代生成原則是分形理論的重要原則。它表示分形在通常的幾何變換下具有不變性,即標度無關性。分形形體中的自相似性可以是完全相同的,也可以是統計意義上的相似。迭代生成原則是指可以從局部的分形通過某種遞歸方法生成更大的整體圖形。
分形理論既是非線性科學的前沿和重要分支,又是一門新興的橫斷學科。作為一種方法論和認識論,其啟示是多方面的:一是分形整體與局部形態的相似,啟發人們通過認識部分來認識整體,從有限中認識無限;二是分形揭示了介於整體與部分、有序與無序、復雜與簡單之間的新形態、新秩序;三是分形從一特定層面揭示了世界普遍聯系和統一的圖景。
由於這種特徵,使得分形理論在量化投資中得到了廣泛的應用,主要可以用於金融時序數列的分解與重構,並在此基礎上進行數列的預測。
6.隨機過程
隨機過程(Stochastic Process)是一連串隨機事件動態關系的定量描述。隨機過程論與其他數學分支如位勢論、微分方程、力學及復變函數論等有密切的聯系,是在自然科學、工程科學及社會科學各領域中研究隨機現象的重要工具。隨機過程論目前已得到廣泛的應用,在諸如天氣預報、統計物理、天體物理、運籌決策、經濟數學、安全科學、人口理論、可靠性及計算機科學等很多領域都要經常用到隨機過程的理論來建立數學模型。
研究隨機過程的方法多種多樣,主要可以分為兩大類:一類是概率方法,其中用到軌道性質、隨機微分方程等;另一類是分析的方法,其中用到測度論、微分方程、半群理論、函數堆和希爾伯特空間等,實際研究中常常兩種方法並用。另外組合方法和代數方法在某些特殊隨機過程的研究中也有一定作用。研究的主要內容有:多指標隨機過程、無窮質點與馬爾科夫過程、概率與位勢及各種特殊過程的專題討論等。
其中,馬爾科夫過程很適於金融時序數列的預測,是在量化投資中的典型應用。
現階段量化投資在基金投資方面使用的比較多,也有部分投資機構合券商的交易系統應用了智能選股的技術。
㈢ 私募直營店:什麼是量化投資基金
量化投資基金是在你的資金投入要有固定的比例分配。
㈣ 什麼是量化投資
量化投資指的是一種投資方法,它是指通過數量化方式或計算機程序化發出買賣指令,以得到穩定收益為目標的交易方式。量化投資是一種定性思想的量化應用,它對大量的指標數據進行分析,得出一些有說服力的數據結論,然後通過計算機技術進行數學建模,並進行量化分析,從而得出一個比較契合實際的投資策略。
量化投資是指通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式。在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。從全球市場的參與主體來看,按照管理資產的規模,全球排名前四以及前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,由量化及程序化交易所管理的資金規模在不斷擴大。
㈤ 什麼是量化交易,未來前景如何知道的講講。
國外量化交易已經發展了40年左右,量化交易程序換交易佔比60%,量化基金規模達到30個億美元,而國內量化交易起步較晚第一隻量化基金在2004年左右,至今量化交易規模不過2萬億RMB,國內現在的量化人才也很缺失,隨著過來一批量化交易的海龜回來從事量化交易會一定程度帶動行業的發展,但是仍需一定時間,加上國內量化交易政策還不夠明朗,整體來說量化交易在國內還是一年藍海,但是路途並非坦途。
㈥ 對沖基金的起源發展
對沖基金起源於50年代初的美國。當時的操作宗旨在於利用期貨、期權等金融衍生產品以及對相關聯的不同股票進行空買空賣、風險對沖的操作技巧,在一定程度上可規避和化解投資風險。1949年世界上誕生了第一個有限合作制的瓊斯對沖基金。
雖然對沖基金在20世紀50年代已經出現,但是,它在接下來的三十年間並未引起人們的太多關注,直到上世紀80年代,隨著金融自由化的發展,對沖基金才有了更廣闊的投資機會,從此進入了快速發展的階段。20世紀90年代,世界通貨膨脹的威脅逐漸減少,同時金融工具日趨成熟和多樣化,對沖基金進入了蓬勃發展的階段。
最早的對沖基金是哪一隻,這還不確定。在上世紀20年代美國的大牛市時期,這種專門面向富人的投資工具數不勝數。其中最有名的是Benjamin Graham和Jerry Newman創立的Graham-Newman Partnership基金。
1923年的小說《股市做手回憶錄》在記載Jesse Livermore的輝煌成就時,描寫了一種被稱為「資產池」的投機工具,和日後所謂的「對沖基金」在形式和功能上極其相似。在Livermore之前, Bernard M. Baruch也經營過「資產池」,他後來另立門戶,大發其財,被稱為「華爾街孤狼」,還成了政治家。
2006年,Warren Buffett在一封致美國金融博物館(Museum of American Finance)雜志的信中宣稱,上世紀20年代的Graham-Newman partnership基金是其所知最早的對沖基金,但其他基金也有可能更早出現。
社會學家、作家、財經記者Alfred W. Jones創造了「對沖基金」一詞,1949年,他還第一次確立了對沖基金的結構,為此廣受贊譽。為了中和市場總體的波動,Jones採用買入看漲資產,賣空看跌資產的手法來避險,他把這種管理市場總體波動的風險敞口的操作稱為「對沖」。
而這種資產組合就是對沖基金。Jones也是第一位採用資金杠桿和風險分散的對沖投資策略並收取業績報酬的基金經理。1966年,《財富》雜志報道稱,盡管Jones收取的管理費高達20%,但是其麾下的基金比最好的共同基金業績還要好。
到了1968年,總共有近200隻對沖基金;1969年,第一隻對沖基金領域的基金(FOHF)在日內瓦誕生。
在1969-70年的經濟衰退期和1973-1974年股市崩盤時期,很多早期的基金都損失慘重,紛紛倒閉。上世紀70年代,對沖基金一般專攻一種策略,大部分基金經理都採用做多/做空股票模型。70年代的衰退時期,對沖基金一度乏人問津,直到80年代末期,媒體報道了幾只大獲成功的基金,它們才重回人們的視野。
90年代的大牛市造就了一批新富階層,對沖基金遍地開花。交易員和投資者的更加關注對沖基金,是因為其強調利益一致的收益分配模式和「跑贏大盤」的投資方法。接下來的十年中,對沖基金的投資策略更加層出不窮,包括信用套利、垃圾債券、固定收益證券、量化投資、多策略投資等等。
21世紀的前十年,對沖匯基金再次風靡全球,2008年,全球對沖基金持有的資產總額已達1.93萬億美元。然而,2008年的信貸危機使對沖基金受到重創,價值縮水,加上某些市場流動性受阻,不少對沖基金開始限制投資者贖回。
2011年4月,對沖基金管理的總資產規模觸底反彈,估計有望達2萬億美元。2011年1月,美國最大的225家對沖基金公司旗下就有1.3萬億美元,其中最大的是Bridgewater Associates,其資產為589億美元。2011年的五大對沖基金公司為Bridgewater Associates(589億美元)、Man Group(392億美元)、Paulson & Co.(351億美元)、Brevan Howard(310億美元)和Och-Ziff(294億美元)。2011年2月,全球對沖基金61%的投資額來自於機構。
2015年5月16日,中國證券投資基金業協會副會長洪磊表示,截至2015年4月底,我國正在運作的對沖基金品種共6714支,資產規模達到8731.5億元。
對沖(Hedging)是一種旨在降低風險的行為或策略。套期保值常見的形式是在一個市場或資產上做交易,
以對沖在另一個市場或資產上的風險,例如,某公司購買一份外匯期權以對沖即期匯率的波動對其經營帶來的風險。進行套期保值的人被稱為套期者或對沖者(Hedger)。
㈦ 量化基金的簡介
目前主要介紹量化投資策略的書籍包括:
(1)《量化投資—策略與技術》,(丁鵬著/電子工業出版社/2012年01月),全書用60多個案例,介紹了各種量化策略的細節和公式以及實現方法。
(2)《高頻交易》,((美)奧爾德里奇著,談效俊等譯/2011年05月/機械工業出版社),書中闡述了高頻交易的原理、系統和實現方法
(3)《積極投資組合管理》,((美)格里納爾德,(美)卡恩著,廖理譯/2008-05-01/清華大學出版社),主要介紹如何構建一個積極的投資組合來戰勝市場的方法
(4)《解讀量化投資》,(忻海著/機械工業出版社/2010年01月),是一本輕松有趣的,介紹量化投資大師西蒙斯和他的大獎章基金的書籍。
㈧ 為什麼99%的基金經理都會輸給「量化投資」
量化投資是指通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式。在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大。
一般而言,具備以下四個因素就是量化:
1、對海量的數據進行分析。
2、運用統計分析的方法。
3、運用計算機、甚至大型計算機作為輔助工具,進行數據存取、統計分析和策略實證測試。
4、尋找統計規律,基於大概率思想制定投資和交易策略。
以量化投資的鼻祖、華爾街傳奇人物詹姆斯·西蒙斯(James Simons)為例,由其運作的大獎章基金(Medallion)在的二十年間,平均年化收益率為35%,若算上44%的收益提成,則該基金實際的年化收益率可高達60%,比同期標普500指數年均回報率高出20多個百分點,即使相較金融大鱷索羅斯和股神巴菲特的操盤表現,也要遙遙領先十幾個百分點。
㈨ 國內目前有多少基金公司在進行量化投資項目
1、即使沒有量化產品的基金管理公司也可能採用量化投資的,比如專項產品中有量化的,所以這個沒有人知道
2、截止目前,正式成立的有64家,還有幾家在設立期
3、目前封閉式基金83個,開放式基金1013個,公開募集的產品中有8個含量化
㈩ 為什麼04年到現在就12家量化投資基金
你只的是公募里的量化投資基金吧,私募有很多啊。
公募的證監會監管太嚴格,而且風控水平要求高,都是有實力的基金或者為了打出明星產品的基金才會去做量化。